4 research outputs found

    MR-trackable intramyocardial injection catheter

    Get PDF
    There is growing interest in delivering cellular agents to infarcted myocardium to prevent postinfarction left ventricular remodeling. MRI can be effectively used to differentiate infarcted from healthy myocardium. MR-guided delivery of cellular agents/therapeutics is appealing because the therapeutics can be precisely targeted to the desired location within the infarct. In this study, a steerable intramyocardial injection catheter that can be actively tracked under MRI was developed and tested. The components of the catheter were arranged to form a loopless RF antenna receiver coil that enabled active tracking. Feasibility studies were performed in canine and porcine myocardial infarction models. Myocardial delayed-enhancement (MDE) imaging identified the infarcted myocardium, and real-time MRI was used to guide left ventricular catheterization from a carotid artery approach. The distal 35 cm of the catheter was seen under MRI with a bright signal at the distal tip of the catheter. The catheter was steered into position, the distal tip was apposed against the infarct, the needle was advanced, and a bolus of MR contrast agent and tissue marker dye was injected intramyocardially, as confirmed by imaging and post-mortem histology. A pilot study involving intramyocardial delivery of magnetically labeled stem cells demonstrated the utility of the active injection catheter system. © 2004 Wiley-Liss, Inc

    A Case Report of Massive Acetaminophen Poisoning Treated with a Novel “Triple Therapy”: N-Acetylcysteine, 4-Methylpyrazole, and Hemodialysis

    No full text
    Massive acetaminophen (N-acetyl-p-aminophenol; APAP) ingestion is characterized by a rapid onset of mitochondrial dysfunction, including metabolic acidosis, lactemia, and altered mental status without hepatotoxicity which may not respond to the standard doses of N-acetylcysteine (NAC). A 64-year-old woman without medical history presented comatose after an ingestion of 208 tablets of Tylenol PM™ (APAP 500 mg and diphenhydramine 25 mg). The initial APAP concentration measured 1,017 µg/mL (therapeutic range 10-30 µg/mL), and elevated anion gap metabolic acidosis, lactemia, and 5-oxoprolinemia were detected. High-dose intravenous (IV) NAC, 4-methylpyrazole (4-MP), and hemodialysis (HD) were initiated. She was transferred to a liver transplant center and continued both NAC and HD therapies until complete resolution of metabolic acidosis and coma without developing hepatitis. She was discharged without sequelae. This is the fourth highest APAP concentration recorded in a surviving patient. Moreover, this is the first report of a novel “triple therapy” using NAC, 4-MP, and HD in the setting of massive APAP ingestion that presents with coma, elevated anion gap metabolic acidosis, and lactemia. Emergency physicians should recognize these critically ill patients and consider high-dose NAC, 4-MP, and HD to be initiated in the emergency department (ED)

    A Case Report of Massive Acetaminophen Poisoning Treated with a Novel “Triple Therapy”: N-Acetylcysteine, 4-Methylpyrazole, and Hemodialysis

    No full text
    Massive acetaminophen (N-acetyl-p-aminophenol; APAP) ingestion is characterized by a rapid onset of mitochondrial dysfunction, including metabolic acidosis, lactemia, and altered mental status without hepatotoxicity which may not respond to the standard doses of N-acetylcysteine (NAC). A 64-year-old woman without medical history presented comatose after an ingestion of 208 tablets of Tylenol PM™ (APAP 500 mg and diphenhydramine 25 mg). The initial APAP concentration measured 1,017 µg/mL (therapeutic range 10-30 µg/mL), and elevated anion gap metabolic acidosis, lactemia, and 5-oxoprolinemia were detected. High-dose intravenous (IV) NAC, 4-methylpyrazole (4-MP), and hemodialysis (HD) were initiated. She was transferred to a liver transplant center and continued both NAC and HD therapies until complete resolution of metabolic acidosis and coma without developing hepatitis. She was discharged without sequelae. This is the fourth highest APAP concentration recorded in a surviving patient. Moreover, this is the first report of a novel “triple therapy” using NAC, 4-MP, and HD in the setting of massive APAP ingestion that presents with coma, elevated anion gap metabolic acidosis, and lactemia. Emergency physicians should recognize these critically ill patients and consider high-dose NAC, 4-MP, and HD to be initiated in the emergency department (ED)
    corecore