22 research outputs found

    Serological survey for mycoplasma hyopneumoniae in free-living wild boars from Campos Gerais region, Paraná, Brasil.

    Get PDF
    The south region of Brazil was responsible for 80.3% of total pork meat export in the country in 2015 (2), with the state of Paraná accountable for 21% of the total pork meat production in that year. Pig farming represented 5.7% of the agricultural gross income of the state in 2016, and the Campos Gerais region accounted for 13.2% of that amount (2). Wild boars are the result of crossbreeding between boars (Sus scrofa scrofa) and domestic pigs (Sus scrofa domesticus). The total population of free-living wild boars in Brazil is unknown (11), but sightings are common in the crop fields and near livestock farms of different regions of Paraná state, including in Campos Gerais (9). The health status of pig herds is important in terms of maintenance and growth of pork production and exports and there are evidences that domestic pigs and wild boars share vulnerabilities in certain viral and bacterial pathogen infections (12). Mycoplasma hyopneumoniae (Mhyo) is a bacterial pathogen that causes porcine enzootic pneumonia, an economically important disease that affects both domestic pigs and wild boars. Mhyo was first isolated in 1965, simultaneously in the United Kingdom (UK) and in the United States of America (USA) (3; 7). Economic losses related to this pathogen and mycoplasmal pneumonia in pig herds are associated with decreased feed efficiency, reduced average of the daily weight gain, and increased medication costs. Thus, knowing the health status of free-living wild boars in the regards of this pathogen is important for the biosecurity of the pork production. The aim of this study was to investigate antibodies against Mhyo in serum samples of free-living wild boars in Campos Gerais region

    Impact of milk protein type on the viability and storage stability of microencapsulated Lactobacillus acidophilus using spray drying

    Get PDF
    Three different milk proteins — skim milk powder (SMP), sodium caseinate (SC) and whey protein concentrate (WPC) — were tested for their ability to stabilize microencapsulated L. acidophilus produced using spray drying. Maltodextrin (MD) was used as the primary wall material in all samples, milk protein as the secondary wall material (7:3 MD/milk protein ratio) and the simple sugars, d-glucose and trehalose were used as tertiary wall materials (8:2:2 MD/protein/sugar ratio) combinations of all wall materials were tested for their ability to enhance the microbial and techno-functional stability of microencapsulated powders. Of the optional secondary wall materials, WPC improved L. acidophilus viability, up to 70 % during drying; SMP enhanced stability by up to 59 % and SC up to 6 %. Lactose and whey protein content enhanced thermoprotection; this is possibly due to their ability to depress the glass transition and melting temperatures and to release antioxidants. The resultant L. acidophilus powders were stored for 90 days at 4 °C, 25 °C and 35 °C and the loss of viability calculated. The highest survival rates were obtained at 4 °C, inactivation rates for storage were dependent on the carrier wall material and the SMP/d-glucose powders had the lowest inactivation rates (0.013 day−1) whilst the highest was observed for the control containing only MD (0.041 day−1) and the SC-based system (0.030 day−1). Further increase in storage temperature (25 °C and 35 °C) was accompanied by increase of the inactivation rates of L. acidophilus that followed Arrhenius kinetics. In general, SMP-based formulations exhibited the highest temperature dependency whilst WPC the lowest. d-Glucose addition improved the storage stability of the probiotic powders although it was accompanied by an increase of the residual moisture, water activity and hygroscopicity, and a reduction of the glass transition temperature in the tested systems
    corecore