7,210 research outputs found

    Early-type Galaxies in the Cluster Abell 2390 at z=0.23

    Full text link
    To examine the evolution of the early-type galaxy population in the rich cluster Abell 2390 at z=0.23 we have gained spectroscopic data of 51 elliptical and lenticular galaxies with MOSCA at the 3.5 m telescope on Calar Alto Observatory. This investigation spans both a broad range in luminosity (-19.3>M_B>-22.3) and uses a wide field of view of 10'x10', therefore the environmental dependence of different formation scenarios can be analysed in detail as a function of radius from the cluster centre. Here we present results on the surface brightness modelling of galaxies where morphological and structural information is available in the F814W filter aboard the Hubble Space Telescope (HST) and investigate for this subsample the evolution of the Fundamental Plane.Comment: 5 pages, 5 figures, to appear in "Carnegie Observatories Astrophysics Series, Vol. 3: Clusters of Galaxies: Probes of Cosmological Structure and Galaxy Evolution", ed. J. S. Mulchaey, A. Dressler, and A. Oemler (Pasadena: Carnegie Observatories, http://www.ociw.edu/ociw/symposia/series/symposium3/proceedings.html

    Exploring the Local Orthogonality Principle

    Full text link
    Nonlocality is arguably one of the most fundamental and counterintuitive aspects of quantum theory. Nonlocal correlations could, however, be even more nonlocal than quantum theory allows, while still complying with basic physical principles such as no-signaling. So why is quantum mechanics not as nonlocal as it could be? Are there other physical or information-theoretic principles which prohibit this? So far, the proposed answers to this question have been only partially successful, partly because they are lacking genuinely multipartite formulations. In Nat. Comm. 4, 2263 (2013) we introduced the principle of Local Orthogonality (LO), an intrinsically multipartite principle which is satisfied by quantum mechanics but is violated by non-physical correlations. Here we further explore the LO principle, presenting new results and explaining some of its subtleties. In particular, we show that the set of no-signaling boxes satisfying LO is closed under wirings, present a classification of all LO inequalities in certain scenarios, show that all extremal tripartite boxes with two binary measurements per party violate LO, and explain the connection between LO inequalities and unextendible product bases.Comment: Typos corrected; data files uploade

    The discovery of trapped energetic electrons in the outer cusp

    Get PDF
    We report on the POLAR/CEPPAD discovery of a trapped, 60°\u3cθ\u3c120° pitch angle electron population in the outer cusp (7−9+ Re), whose energetic electron component extends from below 30 keV to ∼2 MeV. Because the time variability in the outer cusp precludes mapping with POLAR, we have carried out test particle simulations using the Tsyganenko 1996 model (T96) to demonstrate the trapping of these energy electrons in the outer cusp region and the resonant frequencies of its trapped motion. We discuss the boundaries and regions of the cusp trap and show that it is analogous to the dipole trap. We show that the phase space densities observed there are equal or greater than the phase space densities observed in the radiation belts at constant magnetic moment, thus allowing the possibility of diffusive filling of the radiation belts from the cus

    The evolution of the number density of compact galaxies

    Full text link
    We compare the number density of compact (small size) massive galaxies at low and high redshift using our Padova Millennium Galaxy and Group Catalogue (PM2GC) at z=0.03-0.11 and the CANDELS results from Barro et al. (2013) at z=1-2. The number density of local compact galaxies with luminosity weighted (LW) ages compatible with being already passive at high redshift is compared with the density of compact passive galaxies observed at high-z. Our results place an upper limit of a factor ~2 to the evolution of the number density and are inconsistent with a significant size evolution for most of the compact galaxies observed at high-z. The evolution may be instead significant (up to a factor 5) for the most extreme, ultracompact galaxies. Considering all compact galaxies, regardless of LW age and star formation activity, a minority of local compact galaxies (<=1/3) might have formed at z<1. Finally, we show that the secular decrease of the galaxy stellar mass due to simple stellar evolution may in some cases be a non-negligible factor in the context of the evolution of the mass-size relation, and we caution that passive evolution in mass should be taken into account when comparing samples at different redshifts.Comment: ApJ in pres

    Detailed Abundances for the Old Population near the Galactic Center: I. Metallicity distribution of the Nuclear Star Cluster

    Get PDF
    We report the first high spectral resolution study of 17 M giants kinematically confirmed to lie within a few parsecs of the Galactic Center, using R=24,000 spectroscopy from Keck/NIRSPEC and a new linelist for the infrared K band. We consider their luminosities and kinematics, which classify these stars as members of the older stellar population and the central cluster. We find a median metallicity of =-0.16 and a large spread from approximately -0.3 to +0.3 (quartiles). We find that the highest metallicities are [Fe/H]<+0.6, with most of the stars being at or below the Solar iron abundance. The abundances and the abundance distribution strongly resembles that of the Galactic bulge rather than disk or halo; in our small sample we find no statistical evidence for a dependence of velocity dispersion on metallicity.Comment: 18 pages, 14 figures, accepted for publication in A

    Relativistic Structure of the Nucleon Self-Energy in Asymmetric Nuclei

    Get PDF
    The Dirac structure of the nucleon self-energy in asymmetric nuclear matter cannot reliably be deduced from the momentum dependence of the single-particle energies. It is demonstrated that such attempts yield an isospin dependence with even a wrong sign. Relativistic studies of finite nuclei have been based on such studies of asymmetric nuclear matter. The effects of these isospin components on the results for finite nuclei are investigated.Comment: 9 pages, Latex 4 figures include

    Experimental Diatom Dissolution and the Quantification of Microfossil Preservation in Sediments

    Get PDF
    Four laboratory experiments on fresh, modern diatoms collected from lakes in the Northern Great Plains of North America were carried out to assess the effects of dissolution on diatom abundance and composition. Marked differences in mean dissolution susceptibility exist between species, despite sometimes significant intra- specific variation between heterovalves. Twenty-four taxa were ranked according to susceptibility to dissolution using an exponential decay model of valve abundance. This dissolution ranking was used to derive two weighted indices of sample preservation. A third index (F) was based on a simple binary classification of valve morphology into dissolved and pristine categories, as distinguished by light microscopy (LM). When compared against rank indices and a measure of species diversity, this diatom dissolution index was found to be the best predictor of the progress of dissolution as estimated by total valve abundance or biogenic silica (BiSi) loss. Strong empirical relationships between F index values and diatom abundance (r2 = 0.84, n = 32) and BiSi (r2 = 0.89, n = 32) were developed and applied to a diatom sequence from a short core from Devils Lake, North Dakota, and compared to diatom-inferred and observed salinity at this site. The F index is a simple, effective diagnostic tool to assess important aspects of diatom preservation. The index can provide insight into Si cycling and record changes in conditions pertinent to diatom dissolution, and has a role in validation of transfer functions or other inferences derived from compositional data
    • …
    corecore