32 research outputs found

    Integrative conjugative elements are widespread in field isolates of mycoplasma species pathogenic for ruminants

    No full text
    Comparative genomics have revealed massive horizontal gene transfer (HGT) between Mycoplasma species sharing common ruminant hosts. Further results pointed toward an integrative conjugative element (ICE) as an important contributor of HGT in the small-ruminant-pathogen Mycoplasma agalactiae. To estimate the prevalence of ICEs in ruminant mycoplasmas, we surveyed their occurrence in a collection of 166 field strains representing 4 (sub) species that are recognized as major pathogens. Based on available sequenced genomes, we first defined the conserved, minimal ICE backbone as composed of 4 coding sequences (CDSs) that are evenly distributed and predicted to be essential for ICE chromosomal integration-excision and horizontal transfer. Screening of the strain collection revealed that these 4 CDSs are well represented in ruminant Mycoplasma species, suggesting widespread occurrence of ICEs. Yet their prevalence varies within and among species, with no correlation found with the individual strain history. Extrachromosomal ICE forms were also often detected, suggesting that ICEs are able to circularize in all species, a first and essential step in ICE horizontal transfer. Examination of the junction of the circular forms and comparative sequence analysis of conserved CDSs clearly pointed toward two types of ICE, the hominis and spiroplasma types, most likely differing in their mechanism of excision-integration. Overall, our data indicate the occurrence and maintenance of functional ICEs in a large number of field isolates of ruminant mycoplasmas. These may contribute to genome plasticity and gene exchanges and, presumably, to the emergence of diverse genotypes within pathogenic mycoplasmas of veterinary importance

    Distribution and diversity of mycoplasma plasmids: lessons from cryptic genetic elements

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The evolution of mycoplasmas from a common ancestor with <it>Firmicutes</it> has been characterized not only by genome down-sizing but also by horizontal gene transfer between mycoplasma species sharing a common host. The mechanisms of these gene transfers remain unclear because our knowledge of the mycoplasma mobile genetic elements is limited. In particular, only a few plasmids have been described within the <it>Mycoplasma</it> genus.</p> <p>Results</p> <p>We have shown that several species of ruminant mycoplasmas carry plasmids that are members of a large family of elements and replicate via a rolling-circle mechanism. All plasmids were isolated from species that either belonged or were closely related to the <it>Mycoplasma mycoides</it> cluster; none was from the <it>Mycoplasma bovis-Mycoplasma agalactiae</it> group. Twenty one plasmids were completely sequenced, named and compared with each other and with the five mycoplasma plasmids previously reported. All plasmids share similar size and genetic organization, and present a mosaic structure. A peculiar case is that of the plasmid pMyBK1 from <it>M. yeatsii;</it> it is larger in size and is predicted to be mobilizable. Its origin of replication and replication protein were identified. In addition, pMyBK1 derivatives were shown to replicate in various species of the <it>M</it>. <it>mycoides</it> cluster, and therefore hold considerable promise for developing gene vectors. The phylogenetic analysis of these plasmids confirms the uniqueness of pMyBK1 and indicates that the other mycoplasma plasmids cluster together, apart from the related replicons found in phytoplasmas and in species of the clade <it>Firmicutes.</it></p> <p>Conclusions</p> <p>Our results unraveled a totally new picture of mycoplasma plasmids. Although they probably play a limited role in the gene exchanges that participate in mycoplasma evolution, they are abundant in some species. Evidence for the occurrence of frequent genetic recombination strongly suggests they are transmitted between species sharing a common host or niche.</p
    corecore