345 research outputs found
Intermittency in the large N-limit of a spherical shell model for turbulence
A spherical shell model for turbulence, obtained by coupling replicas of
the Gledzer, Okhitani and Yamada shell model, is considered. Conservation of
energy and of an helicity-like invariant is imposed in the inviscid limit. In
the limit this model is analytically soluble and is remarkably
similar to the random coupling model version of shell dynamics. We have studied
numerically the convergence of the scaling exponents toward the value predicted
by Kolmogorov theory (K41). We have found that the rate of convergence to the
K41 solution is linear in 1/N. The restoring of Kolmogorov law has been related
to the behaviour of the probability distribution functions of the instantaneous
scaling exponent.Comment: 10 pages, Latex, 3 Postscript figures, to be published on Europhys.
Let
Multi-color pyrometer for materials processing in space
The design, construction and calibration of a computer-linked multicolor pyrometer is described. The device was constructed for ready adaptation to a spacecraft and for use in the control of thermal processes for manufacturing materials in space. The pyrometer actually uses only one color at a time, and is relatively insensitive to uncertainties in the heated object's emissivity because the product of the color and the temperature has been selected to be within a regime where the radiant energy emitted from the body increases very rapidly with temperature. The instrument was calibrated and shown to exceed its design goal of temperature measurements between 300 and 2000 C, and its accuracy in the face of imprecise knowledge of the hot object's emissivity was demonstrated
Entropic Tightening of Vibrated Chains
We investigate experimentally the distribution of configurations of a ring
with an elementary topological constraint, a ``figure-8'' twist. Using vibrated
granular chains, which permit controlled preparation and direct observation of
such a constraint, we show that configurations where one of the loops is tight
and the second is large are strongly preferred. This agrees with recent
predictions for equilibrium properties of topologically-constrained polymers.
However, the dynamics of the tightening process weakly violate detailed
balance, a signature of the nonequilibrium nature of this system.Comment: 4 pages, 4 figure
Growing smooth interfaces with inhomogeneous, moving external fields: dynamical transitions, devil's staircases and self-assembled ripples
We study the steady state structure and dynamics of an interface in a pure
Ising system on a square lattice placed in an inhomogeneous external field. The
field has a profile with a fixed shape designed to stabilize a flat interface,
and is translated with velocity v_e. For small v_e, the interface is stuck to
the profile, is macroscopically smooth, and is rippled with a periodicity in
general incommensurate with the lattice parameter. For arbitrary orientations
of the profile, the local slope of the interface locks in to one of infinitely
many rational values (devil's staircase) which most closely approximates the
profile. These ``lock-in'' structures and ripples dissappear as v_e increases.
For still larger v_e the profile detaches from the interface which is now
characterized by standard Kardar-Parisi-Zhang (KPZ) exponents.Comment: 4 pages, 4 figures, published version, minor change
Points, Walls and Loops in Resonant Oscillatory Media
In an experiment of oscillatory media, domains and walls are formed under the
parametric resonance with a frequency double the natural one. In this bi-stable
system, %phase jumps by crossing walls. a nonequilibrium transition from
Ising wall to Bloch wall consistent with prediction is confirmed
experimentally. The Bloch wall moves in the direction determined by its
chirality with a constant speed. As a new type of moving structure in
two-dimension, a traveling loop consisting of two walls and Neel points is
observed.Comment: 9 pages (revtex format) and 6 figures (PostScript
Field Theory And Second Renormalization Group For Multifractals In Percolation
The field-theory for multifractals in percolation is reformulated in such a
way that multifractal exponents clearly appear as eigenvalues of a second
renormalization group. The first renormalization group describes geometrical
properties of percolation clusters, while the second-one describes electrical
properties, including noise cumulants. In this context, multifractal exponents
are associated with symmetry-breaking fields in replica space. This provides an
explanation for their observability. It is suggested that multifractal
exponents are ''dominant'' instead of ''relevant'' since there exists an
arbitrary scale factor which can change their sign from positive to negative
without changing the Physics of the problem.Comment: RevTex, 10 page
Photonic superdiffusive motion in resonance line radiation trapping - partial frequency redistribution effects
The relation between the jump length probability distribution function and
the spectral line profile in resonance atomic radiation trapping is considered
for Partial Frequency Redistribution (PFR) between absorbed and reemitted
radiation. The single line Opacity Distribution Function [M.N. Berberan-Santos
et.al. J.Chem.Phys. 125, 174308 (2006)] is generalized for PFR and used to
discuss several possible redistribution mechanisms (pure Doppler broadening,
combined natural and Doppler broadening and combined Doppler, natural and
collisional broadening). It is shown that there are two coexisting scales with
a different behavior: the small scale is controlled by the intricate PFR
details while the large scale is essentially given by the atom rest frame
redistribution asymptotic. The pure Doppler and combined natural, Doppler and
collisional broadening are characterized by both small and large scale
superdiffusive Levy flight behaviors while the combined natural and Doppler
case has an anomalous small scale behavior but a diffusive large scale
asymptotic. The common practice of assuming complete redistribution in core
radiation and frequency coherence in the wings of the spectral distribution is
incompatible with the breakdown of superdiffusion in combined natural and
Doppler broadening conditions
Real and virtual photons in an external constant electromagnetic field of most general form
The photon behavior in an arbitrary superposition of constant magnetic and
electric fields is considered on most general grounds basing on the first
principles like Lorentz- gauge- charge- and parity-invariance. We make model-
and approximation-independent, but still rather informative, statements about
the behavior that the requirement of causal propagation prescribes to massive
and massless branches of dispersion curves, and describe the way the eigenmodes
are polarized. We find, as a consequence of Hermiticity in the transparency
domain, that adding a smaller electric field to a strong magnetic field in
parallel to the latter causes enhancement of birefringence. We find the
magnetic field produced by a point electric charge far from it (a manifestation
of magneto-electric phenomenon). We establish degeneracies of the polarization
tensor that (under special kinematic conditions) occur due to space-time
symmetries of the vacuum left after the external field is imposed.Comment: 30 pages, 1 figure, 57 equations, reference list of 38 item
Turbulence and Multiscaling in the Randomly Forced Navier Stokes Equation
We present an extensive pseudospectral study of the randomly forced
Navier-Stokes equation (RFNSE) stirred by a stochastic force with zero mean and
a variance , where is the wavevector and the dimension . We present the first evidence for multiscaling of velocity structure
functions in this model for . We extract the multiscaling exponent
ratios by using extended self similarity (ESS), examine their
dependence on , and show that, if , they are in agreement with those
obtained for the deterministically forced Navier-Stokes equation (NSE). We
also show that well-defined vortex filaments, which appear clearly in studies
of the NSE, are absent in the RFNSE.Comment: 4 pages (revtex), 6 figures (postscript
- …