37 research outputs found

    A Preliminary Analysis of the Immunoglobulin Genes in the African Elephant (Loxodonta africana)

    Get PDF
    The genomic organization of the IgH (Immunoglobulin heavy chain), Igκ (Immunoglobulin kappa chain), and Igλ (Immunoglobulin lambda chain) loci in the African elephant (Loxodonta africana) was annotated using available genome data. The elephant IgH locus on scaffold 57 spans over 2,974 kb, and consists of at least 112 VH gene segments, 87 DH gene segments (the largest number in mammals examined so far), six JH gene segments, a single μ, a δ remnant, and eight γ genes (α and ε genes are missing, most likely due to sequence gaps). The Igκ locus, found on three scaffolds (202, 50 and 86), contains a total of 153 Vκ gene segments, three Jκ segments, and a single Cκ gene. Two different transcriptional orientations were determined for these Vκ gene segments. In contrast, the Igλ locus on scaffold 68 includes 15 Vλ gene segments, all with the same transcriptional polarity as the downstream Jλ-Cλ cluster. These data suggest that the elephant immunoglobulin gene repertoire is highly diverse and complex. Our results provide insights into the immunoglobulin genes in a placental mammal that is evolutionarily distant from humans, mice, and domestic animals

    Newts with superpowers

    No full text

    Hind limb unloading, a model of spaceflight conditions, leads to decreased B lymphopoiesis similar to aging

    No full text
    Within the bone marrow, the endosteal niche plays a crucial role in B-cell differentiation. Because spaceflight is associated with osteoporosis, we investigated whether changes in bone microstructure induced by a ground-based model of spaceflight, hind limb unloading (HU), could affect B lymphopoiesis. To this end, we analyzed both bone parameters and the frequency of early hematopoietic precursors and cells of the B lineage after 3, 6, 13, and 21 d of HU. We found that limb disuse leads to a decrease in both bone microstructure and the frequency of B-cell progenitors in the bone marrow. Although multipotent hematopoietic progenitors were not affected by HU, a decrease in B lymphopoiesis was observed as of the common lymphoid progenitor (CLP) stage with a major block at the progenitor B (pro-B) to precursor B (pre-B) cell transition (5- to 10-fold decrease). The modifications in B lymphopoiesis were similar to those observed in aged mice and, as with aging, decreased B-cell generation in HU mice was associated with reduced expression of B-cell transcription factors, early B-cell factor (EBF) and Pax5, and an alteration in STAT5-mediated IL-7 signaling. These findings demonstrate that mechanical unloading of hind limbs results in a decrease in early B-cell differentiation resembling age-related modifications in B lymphopoiesis.status: publishe

    Expression profiling of senescent-associated genes in human dermis from young and old donors. Proof-of-concept study.

    Full text link
    It is often described that it is difficult to really discriminate the cause of intrinsic skin aging. The aim of this study was to compare the profiles of expression of senescence-associated genes in biopsies of dermis from young and old human donors. TGF-beta1 was up-regulated in the dermis of old donors as well as the TGF-beta1-regulated genes. The anti-oxidant enzymes Selenium-dependent Glutathione peroxidase and Glutatione S-Transferase Theta 1 were also up-regulated in old dermis as well as Tumor Necrosis Factor Receptor Superfamily 1A. None of these genes had altered expression level in skin fibroblasts embedded in a collagen matrix and exposed to sublethal doses of UVB, suggesting their involvement in intrinsic aging. This study represents a proof-of-concept of larger whole transcriptome studies where all avenues should be used to subtract changes in gene expression due to extrinsic aging from changes potentially due to intrinsic aging
    corecore