20 research outputs found

    A comparison of GC-FID and PTR-MS toluene measurements in ambient air under conditions of enhanced monoterpene loading

    Get PDF
    Toluene was measured using both a gas chromatographic system (GC), with a flame ionization detector (FID), and a proton transfer reaction-mass spectrometer (PTR-MS) at the AIRMAP atmospheric monitoring station Thompson Farm (THF) in rural Durham, NH during the summer of 2004. Simultaneous measurements of monoterpenes, including alpha- and beta-pinene, camphene, Delta(3)-carene, and d-limonene, by GC-FID demonstrated large enhancements in monoterpene mixing ratios relative to toluene, with median and maximum enhancement ratios of similar to 2 and similar to 30, respectively. A detailed comparison between the GC-FID and PTR-MS toluene measurements was conducted to test the specificity of PTR-MS for atmospheric toluene measurements under conditions often dominated by biogenic emissions. We derived quantitative estimates of potential interferences in the PTR-MS toluene measurements related to sampling and analysis of monoterpenes, including fragmentation of the monoterpenes and some of their primary carbonyl oxidation products via reactions with H(3)O(+), O(2)(+) and NO(+) in the PTR-MS drift tube. The PTR-MS and GC-FID toluene measurements were in good quantitative agreement and the two systems tracked one another well from the instrumental limits of detection to maximum mixing ratios of similar to 0.5 ppbv. A correlation plot of the PTR-MS versus GC-FID toluene measurements was described by the least squares regression equation y=(1.13 +/- 0.02)x-(0.008 +/- 0.003) ppbv, suggesting a small similar to 13% positive bias in the PTR-MS measurements. The bias corresponded with a similar to 0.055 ppbv difference at the highest measured toluene level. The two systems agreed quantitatively within the combined 1 sigma measurement precisions for 60% of the measurements. Discrepancies in the measured mixing ratios were not well correlated with enhancements in the monoterpenes. Better quantitative agreement between the two systems was obtained by correcting the PTR-MS measurements for contributions from monoterpene fragmentation in the PTR-MS drift tube; however, the improvement was minor (\u3c10%). Interferences in the PTRMS measurements from fragmentation of the monoterpene oxidation products pinonaldehyde, caronaldehyde and alpha-pinene oxide were also likely negligible. A relatively large and variable toluene background in the PTR-MS instrument likely drove the measurement bias; however, the precise contribution was difficult to accurately quantify and thus was not corrected for in this analysis. The results from THF suggest that toluene can be reliably quantified by PTR-MS using our operating conditions (drift tube pressure, temperature and voltage of 2.0 mbar, 45 degrees C and 600V, respectively) under the ambient compositions probed. This work extends the range of field conditions under which PTR-MS validation studies have been conducted

    Long-term study of VOCs measured with PTR-MS at a rural site in New Hampshire with urban influences

    Get PDF
    A long-term, high time-resolution volatile organic compound (VOC) data set from a ground site that experiences urban, rural, and marine influences in the Northeastern United States is presented. A proton-transfer-reaction mass spectrometer (PTR-MS) was used to quantify 15 VOCs: a marine tracer dimethyl sulfide (DMS), a biomass burning tracer acetonitrile, biogenic compounds (monoterpenes, isoprene), oxygenated VOCs (OVOCs: methyl vinyl ketone (MVK) plus methacrolein (MACR), methanol, acetone, methyl ethyl ketone (MEK), acetaldehyde, and acetic acid), and aromatic compounds (benzene, toluene, C<sub>8</sub> and C<sub>9</sub> aromatics). Time series, overall and seasonal medians, with 10th and 90th percentiles, seasonal mean diurnal profiles, and inter-annual comparisons of mean summer and winter diurnal profiles are shown. Methanol and acetone exhibit the highest overall median mixing ratios 1.44 and 1.02 ppbv, respectively. Comparing the mean diurnal profiles of less well understood compounds (e.g., MEK) with better known compounds (e.g., isoprene, monoterpenes, and MVK + MACR) that undergo various controls on their atmospheric mixing ratios provides insight into possible sources of the lesser known compounds. The constant diurnal value of ~0.7 for the toluene:benzene ratio in winter, may possibly indicate the influence of wood-based heating systems in this region. Methanol exhibits an initial early morning release in summer unlike any other OVOC (or isoprene) and a dramatic late afternoon mixing ratio increase in spring. Although several of the OVOCs appear to have biogenic sources, differences in features observed between isoprene, methanol, acetone, acetaldehyde, and MEK suggest they are produced or emitted in unique ways

    Are biogenic emissions a significant source of summertime atmospheric toluene in the rural Northeastern United States?

    Get PDF
    Summertime atmospheric toluene enhancements at Thompson Farm in the rural northeastern United States were unexpected and resulted in a toluene/benzene seasonal pattern that was distinctly different from that of other anthropogenic volatile organic compounds. Consequently, three hydrocarbon sources were investigated for potential contributions to the enhancements during 2004–2006. These included: (1) increased warm season fuel evaporation coupled with changes in reformulated gasoline (RFG) content to meet US EPA summertime volatility standards, (2) local industrial emissions and (3) local vegetative emissions. The contribution of fuel evaporation emission to summer toluene mixing ratios was estimated to range from 16 to 30 pptv d−1, and did not fully account for the observed enhancements (20–50 pptv) in 2004–2006. Static chamber measurements of alfalfa, a crop at Thompson Farm, and dynamic branch enclosure measurements of loblolly pine trees in North Carolina suggested vegetative emissions of 5 and 12 pptv d−1 for crops and coniferous trees, respectively. Toluene emission rates from alfalfa are potentially much larger as these plants were only sampled at the end of the growing season. Measured biogenic fluxes were on the same order of magnitude as the influence from gasoline evaporation and industrial sources (regional industrial emissions estimated at 7 pptv d−1 and indicated that local vegetative emissions make a significant contribution to summertime toluene enhancements. Additional studies are needed to characterize the variability and factors controlling toluene emissions from alfalfa and other vegetation types throughout the growing season

    A comparison of GC-FID and PTR-MS toluene measurements in ambient air under conditions of enhanced monoterpene loading

    Get PDF
    Toluene was measured using both a gas chromatographic system (GC), with a flame ionization detector (FID), and a proton transfer reaction-mass spectrometer (PTR-MS) at the AIRMAP atmospheric monitoring station Thompson Farm (THF) in rural Durham, NH during the summer of 2004. Simultaneous measurements of monoterpenes, including α- and β-pinene, camphene, Δ <sup>3</sup>-carene, and <i>d</i>-limonene, by GC-FID demonstrated large enhancements in monoterpene mixing ratios relative to toluene, with median and maximum enhancement ratios of ~2 and ~30, respectively. A detailed comparison between the GC-FID and PTR-MS toluene measurements was conducted to test the specificity of PTR-MS for atmospheric toluene measurements under conditions often dominated by biogenic emissions. We derived quantitative estimates of potential interferences in the PTR-MS toluene measurements related to sampling and analysis of monoterpenes, including fragmentation of the monoterpenes and some of their primary carbonyl oxidation products via reactions with H<sub>3</sub>O<sup>+</sup>, O<sub>2</sub><sup>+</sup> and NO<sup>+</sup> in the PTR-MS drift tube. The PTR-MS and GC-FID toluene measurements were in good quantitative agreement and the two systems tracked one another well from the instrumental limits of detection to maximum mixing ratios of ~0.5 ppbv. A correlation plot of the PTR-MS versus GC-FID toluene measurements was described by the least squares regression equation <i>y</i>=(1.13± 0.02)<i>x</i>−(0.008±0.003) ppbv, suggesting a small ~13% positive bias in the PTR-MS measurements. The bias corresponded with a ~0.055 ppbv difference at the highest measured toluene level. The two systems agreed quantitatively within the combined 1σ measurement precisions for 60% of the measurements. Discrepancies in the measured mixing ratios were not well correlated with enhancements in the monoterpenes. Better quantitative agreement between the two systems was obtained by correcting the PTR-MS measurements for contributions from monoterpene fragmentation in the PTR-MS drift tube; however, the improvement was minor (<10%). Interferences in the PTR-MS measurements from fragmentation of the monoterpene oxidation products pinonaldehyde, caronaldehyde and α-pinene oxide were also likely negligible. A relatively large and variable toluene background in the PTR-MS instrument likely drove the measurement bias; however, the precise contribution was difficult to accurately quantify and thus was not corrected for in this analysis. The results from THF suggest that toluene can be reliably quantified by PTR-MS using our operating conditions (drift tube pressure, temperature and voltage of 2.0 mbar, 45 °C and 600 V, respectively) under the ambient compositions probed. This work extends the range of field conditions under which PTR-MS validation studies have been conducted

    Temporal variability, sources, and sinks of C<sub>1</sub>-C<sub>5</sub> alkyl nitrates in coastal New England

    No full text
    Seven C1-C5 alkyl nitrates were measured both on the mainland and off the coast of New Hampshire using gas chromatographic techniques. Five separate data sets are presented to characterize the seasonal and diurnal trends and the major sources and loss processes of these compounds. Based on in situ measurements conducted at the University of New Hampshire (UNH) Atmospheric Observing Station at Thompson Farm (TF) located in southeast NH during winter (January–February) 2002, summer (June–August) 2002, summer (July–August) 2004, and on daily canister samples collected at midday from January 2004–February 2008, the median total alkyl nitrate mixing ratio (&Sigma;RONO2) was 23–25 pptv in winter and 14–16 pptv in summer. During summers 2002 and 2004, MeONO2 decreased overnight and reached minimum hourly average mixing ratios in the early morning. Comparison with wind speed and trace gas trends suggested that dry deposition contributed to the early morning MeONO2 minimum which is a previously unaccounted for removal mechanism. The mean dry deposition rate and velocity of MeONO2 was estimated to be &minus;0.5 nmol m&minus;2 hr&minus;1 and 0.13 cm s&minus;1, respectively. Results from ambient air and surface seawater measurements made onboard the NOAA R/V Ronald H. Brown in the Gulf of Maine during the 2002 New England Air Quality Study and from ambient canister samples collected throughout the Great Bay estuary in August 2003 are also presented. Comparisons between the alkyl nitrate trends with anthropogenic and marine tracers suggest that a marine source of alkyl nitrates is not significant in coastal New England. Given the apparent prominence of a secondary source, comparisons between observed and predicted alkyl nitrate/parent hydrocarbon ratios were made which demonstrated that background mixing ratios have a continuous and prevalent influence on the alkyl nitrate distribution

    Surface Photochemistry of Adsorbed Nitrate: The Role of Adsorbed Water in the Formation of Reduced Nitrogen Species on α-Fe2O3 Particle Surfaces

    Get PDF
    The surface photochemistry of nitrate, formed from nitric acid adsorption, on hematite (α-Fe2O3) particle surfaces under different environmental conditions is investigated using X-ray photoelectron spectroscopy (XPS). Following exposure of α-Fe2O3 particle surfaces to gas-phase nitric acid, a peak in the N1s region is seen at 407.4 eV; this binding energy is indicative of adsorbed nitrate. Upon broadband irradiation with light (λ > 300 nm), the nitrate peak decreases in intensity as a result of a decrease in adsorbed nitrate on the surface. Concomitant with this decrease in the nitrate coverage, there is the appearance of two lower binding energy peaks in the N1s region at 401.7 and 400.3 eV, due to reduced nitrogen species. The formation as well as the stability of these reduced nitrogen species, identified as NO– and N–, are further investigated as a function of water vapor pressure. Additionally, irradiation of adsorbed nitrate on α-Fe2O3 generates three nitrogen gas-phase products including NO2, NO, and N2O. As shown here, different environmental conditions of water vapor pressure and the presence of molecular oxygen greatly influence the relative photoproduct distribution from nitrate surface photochemistry. The atmospheric implications of these results are discussed
    corecore