3 research outputs found

    Passive pumping for the parallel trapping of single neurons onto a microsieve electrode array

    Get PDF
    Recent advances in brain-on-a-chip technology have led to the development of modified microelectrode arrays. Previously, the authors have contributed to this exciting field of neuroscience by demonstrating a fabrication process for producing microsieve chips that contain three-dimensional (3D) micropores at the electrodes [termed microsieve electrode arrays (μSEAs)]. This chip allows us to trap hundreds of single neuronal cells in parallel onto the electrodes [B. Schurink and R. Luttge, J. Vac. Sci. Technol., B 31, 06F903 (2013)]. However, trapping the neurons reproducibly under gentle, biocompatible conditions remains a challenge. The current setup involves the use of a hand-operated syringe that is connected to the back of the μSEA chip with a polydimethylsiloxane (PDMS) construct. This makes the capture process rather uncontrolled, which can lead to either cell damage by shear stress or the release of trapped neurons when unplugging the syringe and PDMS constructs. Although, the authors could achieve an efficient capture rate of single neurons within the 3D micropores (80%-90% filling efficiency), cell culture performance varied significantly. In this paper, the authors introduce a passive pumping mechanism for the parallel trapping of neurons onto the μSEA chip with the goal to improve its biological performance. This method uses the capillary pumping between two droplets (a "pumping droplet" on one side of the chip and a "reservoir droplet" on the other side) to create a stable and controllable flow. Due to simplification of the handling procedure, omitting the use of a syringe and additional connections to the μSEA chip, the set-up is compatible with real time microscopy techniques. Hence, the authors could use optical particle tracking to study the trapping process and record particle velocities by video imaging. Analyzing the particle velocities in the passive pumping regime, the authors can confirm a gentle uniform particle flow through the 3D micropores. The authors show that passive pumping particle velocity can be tightly controlled (from 5 to 7.5 to 10.4 μm/s) simply by changing the droplet volume of the pumping droplets from 20, 40, and 60 μl and keeping the reservoir drop constant (10 μl). The authors demonstrate that neuron capturing efficiency and reproducibility as well as neuronal network formation are greatly improved when using this passive pumping approach

    Spontaneous Epileptic Recordings from hiPSC-Derived Cortical Neurons Cultured with a Human Epileptic Brain Biopsy on a Multi Electrode Array

    Get PDF
    A growing societal awareness is calling upon scientists to reconsider the use of animals in research, which stimulates the development of translational in vitro models. The physiological and architectural interactions between different cell types within an organ present a challenge to these models, particularly for a complex organ such as the brain. Thus far, in vitro brain models mostly consist of a single cell type and demonstrate little predictive value. Here, we present a co-culture of an epileptic human neocortical biopsy on a layer of human induced pluripotent stem cell (hiPSC)-derived cortical neurons. The activity of the cortical neurons was recorded by a 120-electrode multi-electrode array. Recordings were obtained at 0, 3, and 6 days after assembly and compared to those obtained from cortical neurons without a biopsy. On all three recording days, the hybrid model displayed a firing rate, burst behavior, number of isolated spikes, inter-spike interval, and network bursting pattern that aligns with the characteristics of an epileptic network as reported by others. Thus, this novel model may be a non-animal, translational alternative for testing new therapies up to six days after resection

    The network formation assay: a spatially standardized neurite outgrowth analytical display for neurotoxicity screening

    No full text
    We present a rapid, reproducible and sensitive neurotoxicity testing platform that combines the benefits of neurite outgrowth analysis with cell patterning. This approach involves patterning neuronal cells within a hexagonal array to standardize the distance between neighbouring cellular nodes, and thereby standardize the length of the neurite interconnections. This feature coupled with defined assay coordinates provides a streamlined display for rapid and sensitive analysis. We have termed this the network formation assay (NFA). To demonstrate the assay we have used a novel cell patterning technique involving thin film poly(dimethylsiloxane) (PDMS) microcontact printing. Differentiated human SH-SY5Y neuroblastoma cells colonized the array with high efficiency, reliably producing pattern occupancies above 70%. The neuronal array surface supported neurite outgrowth, resulting in the formation of an interconnected neuronal network. Exposure to acrylamide, a neurotoxic reference compound, inhibited network formation. A dose-response curve from the NFA was used to determine a 20% network inhibition (NI(20)) value of 260 mu M. This concentration was approximately 10-fold lower than the value produced by a routine cell viability assay, and demonstrates that the NFA can distinguish network formation inhibitory effects from gross cytotoxic effects. Inhibition of the mitogen-activated protein kinase (MAPK) ERK1/2 and phosphoinositide-3-kinase (PI-3K) signaling pathways also produced a dose-dependent reduction in network formation at non-cytotoxic concentrations. To further refine the assay a simulation was developed to manage the impact of pattern occupancy variations on network formation probability. Together these developments and demonstrations highlight the potential of the NFA to meet the demands of high-throughput applications in neurotoxicology and neurodevelopmental biology
    corecore