83 research outputs found

    Modeling the influence of Twitter in reducing and increasing the spread of influenza epidemics

    Get PDF
    In this paper we present compartmentalized neuron arraying (CNA) microfluidic circuits for the preparation of neuronal networks using minimal cellular inputs (10–100-fold less than existing systems). The approach combines the benefits of microfluidics for precision single cell handling with biomaterial patterning for the long term maintenance of neuronal arrangements. A differential flow principle was used for cell metering and loading along linear arrays. An innovative water masking technique was developed for the inclusion of aligned biomaterial patterns within the microfluidic environment. For patterning primary neurons the technique involved the use of meniscus-pinning micropillars to align a water mask for plasma stencilling a poly-amine coating. The approach was extended for patterning the human SH-SY5Y neuroblastoma cell line using a poly(ethylene glycol) (PEG) back-fill and for dopaminergic LUHMES neuronal precursors by the further addition of a fibronectin coating. The patterning efficiency Epatt was >75% during lengthy in chip culture, with ~85% of the outgrowth channels occupied by neurites. Neurons were also cultured in next generation circuits which enable neurite guidance into all outgrowth channels for the formation of extensive inter-compartment networks. Fluidic isolation protocols were developed for the rapid and sustained treatment of the different cellular and sub-cellular compartments. In summary, this research demonstrates widely applicable microfluidic methods for the construction of compartmentalized brain models with single cell precision. These minimalistic ex vivo tissue constructs pave the way for high throughput experimentation to gain deeper insights into pathological processes such as Alzheimer and Parkinson Diseases, as well as neuronal development and function in health

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    Get PDF

    Chronic kidney disease after liver, cardiac, lung, heart–lung, and hematopoietic stem cell transplant

    Get PDF
    Patient survival after cardiac, liver, and hematopoietic stem cell transplant (HSCT) is improving; however, this survival is limited by substantial pretransplant and treatment-related toxicities. A major cause of morbidity and mortality after transplant is chronic kidney disease (CKD). Although the majority of CKD after transplant is attributed to the use of calcineurin inhibitors, various other conditions such as thrombotic microangiopathy, nephrotic syndrome, and focal segmental glomerulosclerosis have been described. Though the immunosuppression used for each of the transplant types, cardiac, liver and HSCT is similar, the risk factors for developing CKD and the CKD severity described in patients after transplant vary. As the indications for transplant and the long-term survival improves for these children, so will the burden of CKD. Nephrologists should be involved early in the pretransplant workup of these patients. Transplant physicians and nephrologists will need to work together to identify those patients at risk of developing CKD early to prevent its development and progression to end-stage renal disease

    Suppression of auto-fluorescence from high-resolution 3D polymeric architectures fabricated via two-photon polymerization for cell biology applications

    Get PDF
    Two-photon polymerization (2PP) has provided the field of cell biology with the opportunity to fabricate precisely designed microscaffolds for a wide range of studies, from mechanobiology to in vitro disease modelling. However, a multitude of commercial and in-house developed photosensitive materials employed in 2PP suffers from high auto-fluorescence in multiple regions of the spectrum. In the context of in vitro cell biological studies, this is a major problem since one of the main methods of characterization is fluorescence microscopy of immuno-stained cells. This undesired auto-fluorescence of microscaffolds affects the efficiency of such an analysis as it often overlaps with fluorescent signals of stained cells rendering them indistinguishable from the scaffolds. Here, we propose two effective solutions to suppress this auto-fluorescence and compare them to determine the superiority of one over the other: photo-bleaching with a powerful UV point source and auto-fluorescence quenching via Sudan Black B (SBB). The materials used in this study were all commercially available, namely IP-L, IP-Dip, IP-S, and IP-PDMS. Bleaching was shown to be 61.7–92.5% effective in reducing auto-fluorescence depending on the material. On the other hand, SBB was shown to be 33–95.4% effective. The worst result in presence of SBB (33%) was in combination with IP-PDMS since the adsorption of the material on IP-PDMS was not sufficient to fully quench the auto-fluorescence. However, auto-fluorescence reduction was significantly enhanced when activating the IP-PDMS structures with oxygen plasma for 30 s. Moreover, we performed a cell culture assay using a human neuroblastoma cell line (SH-SY5Y) to prove the effectiveness of both methods in immunofluorescence characterization. SBB presented a lower performance in the study especially in presence of 2PP-fabricated microchannels and microcages, within which the differentiated SH-SY5Y cells migrated and extended their axon-like processes, since the SBB obstructed the fluorescence of the stained cells. Therefore, we concluded that photo-bleaching is the optimal way of auto-fluorescence suppression. In summary, this study provides a systematic comparison to answer one of the most pressing issues in the field of 2PP applied to cell biology and paves the way to a more efficient immunofluorescence characterization of cells cultured within engineered in vitro microenvironments.</p

    A novel method to understand tumor cell invasion : integrating extracellular matrix mimicking layers in microfluidic chips by “selective curing”

    Get PDF
    A major challenge in studying tumor cell invasion into its surrounding tissue is to identify the contribution of individual factors in the tumor microenvironment (TME) to the process. One of the important elements of the TME is the fibrous extracellular matrix (ECM) which is known to influence cancer cell invasion, but exactly how remains unclear. Therefore, there is a need for new models to unravel mechanisms behind the tumor-ECM interaction. In this article, we present a new microfabrication method, called selective curing, to integrate ECM-mimicking layers between two microfluidic channels. This method enables us to study the effect of 3D matrices with controlled architecture, beyond the conventionally used hydrogels, on cancer invasion in a controlled environment. As a proof of principle, we have integrated two electrospun Polycaprolactone (PCL) matrices with different fiber diameters in one chip. We then studied the 3D migration of MDA-MB-231 breast cancer cells into the matrices under the influence of a chemotactic gradient. The results show that neither the invasion distance nor the general cell morphology is affected significantly by the difference in fiber size of these matrices. The cells however do produce longer and more protrusions in the matrix with smaller fiber size. This microfluidic system enables us to study the influence of other factors in the TME on cancer development as well as other biological applications as it provides a controlled compartmentalized environment compatible with cell culturing

    Veille documentaire

    No full text
    National audienc
    • …
    corecore