551 research outputs found

    Low frequency quasi-normal modes of AdS black holes

    Get PDF
    We calculate analytically low frequency quasi-normal modes of gravitational perturbations of AdS Schwarzschild black holes in dd dimensions. We arrive at analytic expressions which are in agreement with their counterparts from linearized hydrodynamics in Sd2×RS^{d-2}\times \mathbb{R}, in accordance with the AdS/CFT correspondence. Our results are also in good agreement with results of numerical calculations.Comment: 14 page

    Morphological variability of upper paleolithic and mesolithic skulls from Sicily

    Get PDF
    Scenarios for the dispersal of Homo sapiens in Southern Europe and in the Mediterranean basin have been uncertain, given the scarceness of osteological samples and the simplicity of the proposed archaeologically-based settlement hypotheses. According to available data, the first anatomically modern humans entered Sicily during the Late Pleistocene, coming from the Italian peninsula. A presumably small Late Epigravettian population colonised coastal sites. Later, North-Western archaeological horizons gave hospitality to a significant Mesolithic expansion. In order to verify a hypothesis of continuity in the peopling of the island, we analyzed Sicilian skulls from the Late Epigravettian site of San Teodoro, Eastern Sicily (AMS14C dated at 14,500 BP) and from the Mesolithic period (14C dated from 9,500 to 8,500 BP) coming from various sites (Uzzo, Molara, Grotta d’Oriente) located on the North Western coast of the island. The aims were to test the biological variability through time within the island as well as to evaluate the relationships of Sicilian Pleistocene hunter-gatherers with Old World populations. We also evaluated the Sicilian Mesolithic uniformity especially between the Uzzo and Grotta d’Oriente sites, given their vicinity and accessibility during the Early Holocene. We applied 3D geometric morphometric methods to assess shape variation as well as geographic and diachronic morphological patterns. All analyzed specimens, plus a comparative sample from the Old World dated from the Upper Paleolithic to recent periods, were transformed in digital images and standard craniofacial landmarks were extracted from the 3D models. Our results underline a high variability among the Mesolithic specimens, as well as a large craniometric distance from the presumed founder Paleolithic settler representatives (San Teodoro specimens) that have closer morphological affinities with other European Upper Paleolithic specimens

    Energy Loss of Gluons, Baryons and k-Quarks in an N=4 SYM Plasma

    Get PDF
    We consider different types of external color sources that move through a strongly-coupled thermal N=4 super-Yang-Mills plasma, and calculate, via the AdS/CFT correspondence, the dissipative force (or equivalently, the rate of energy loss) they experience. A bound state of k quarks in the totally antisymmetric representation is found to feel a force with a nontrivial k-dependence. Our result for k=1 (or k=N-1) agrees at large N with the one obtained recently by Herzog et al. and Gubser, but contains in addition an infinite series of 1/N corrections. The baryon (k=N) is seen to experience no drag. Finally, a heavy gluon is found to be subject to a force which at large N is twice as large as the one experienced by a heavy quark, in accordance with gauge theory expectations.Comment: Latex 2e, 24 pages, 1 eps figure; v2: slightly amplified discussion on the relation between the drag force and the tension of a spatial Wilson loop; v3: minor changes, version to appear in JHE

    The Energy of a Moving Quark-Antiquark Pair in an N=4 SYM Plasma

    Full text link
    We make use of the AdS/CFT correspondence to determine the energy of an external quark-antiquark pair that moves through strongly-coupled thermal N=4 super-Yang-Mills plasma, both in the rest frame of the plasma and in the rest frame of the pair. It is found that the pair feels no drag force, has an energy that reproduces the expected 1/L (or gamma/L) behavior at small quark-antiquark separations, and becomes unbound beyond a certain screening length whose velocity-dependence we determine. We discuss the relation between the high-velocity limit of our results and the lightlike Wilson loop proposed recently as a definition of the jet-quenching parameter.Comment: LaTeX 2e, 27 pages, 8 eps figures; v2: added computation of the pair energy in the plasma rest frame, clarified the comparison with hep-ph/0607062, corrected typos, added reference

    Beauty is Attractive: Moduli Trapping at Enhanced Symmetry Points

    Full text link
    We study quantum effects on moduli dynamics arising from the production of particles which are light at special points in moduli space. The resulting forces trap the moduli at these points, which often exhibit enhanced symmetry. Moduli trapping occurs in time-dependent quantum field theory, as well as in systems of moving D-branes, where it leads the branes to combine into stacks. Trapping also occurs in an expanding universe, though the range over which the moduli can roll is limited by Hubble friction. We observe that a scalar field trapped on a steep potential can induce a stage of acceleration of the universe, which we call trapped inflation. Moduli trapping ameliorates the cosmological moduli problem and may affect vacuum selection. In particular, rolling moduli are most powerfully attracted to the points with the largest number of light particles, which are often the points of greatest symmetry. Given suitable assumptions about the dynamics of the very early universe, this effect might help to explain why among the plethora of possible vacuum states of string theory, we appear to live in one with a large number of light particles and (spontaneously broken) symmetries. In other words, some of the surprising properties of our world might arise not through pure chance or miraculous cancellations, but through a natural selection mechanism during dynamical evolution.Comment: 50 pages, 4 figures; v2: added references and an appendix describing a related classical proces

    Multi-proxy analysis suggests Late Pleistocene affinities of human skeletal remains attributed to Balzi Rossi

    Get PDF
    In two publications from 1967 and 1971, M. Masali described human skeletal remains presumed to have been found in the Balzi Rossi caves (Ventimiglia, Italy), based on a signed note dated to 1908. Since then, the remains - dubbed "Conio's Finds" and preserved at the University of Torino - had not been further studied. We performed a multidisciplinary investigation aimed at clarifying the geographical and chronological attribution of these specimens. Collagen extraction for AMS dating was unsuccessful, but we obtained two direct dates on the best- preserved crania via 231Pa/235U direct gamma-ray spectrometry (10,500±2,000 years BP and 12,500±2,500 years BP). We analyzed the metrics and morphology of the crania and femora by comparing them with samples belonging to the Upper Paleolithic, Mesolithic, and Neolithic periods, and evidenced that the "Conio's Finds" are morphologically more compatible with a Late Pleistocene rather than Holocene attribution. We analyzed the literature regarding the history of excavations at Balzi Rossi, and we propose that - if any credence should be given to the note accompanying the material - the remains may have been found in front of Grotta dei Fanciulli or Grotta del Caviglione, in the redeposited soil dug up during the installation of lime kilns carried out between the late 18th and the early 19th centuries. These hypotheses may be tested in the future by comparing the speleothem deposited on one of the crania and the remaining deposit at the site

    Quark-Gluon Plasma - New Frontiers

    Full text link
    As implied by organizers, this talk is not a conference summary but rather an outline of progress/challenges/``frontiers'' of the theory. Some fundamental questions addressed are: Why is sQGP such a good liquid? Do we understand (de)confinement and what do we know about ``magnetic'' objects creating it? Can we understand the AdS/CFT predictions, from the gauge theory side? Can they be tested experimentally? Can AdS/CFT duality help us understand rapid equilibration/entropy production? Can we work out a complete dynamical ``gravity dual'' to heavy ion collisions?Comment: final talk at Quark Matter 2008, Jaipur, India, Feb.200

    Gravitational quasinormal modes of AdS black branes in d spacetime dimensions

    Full text link
    The AdS/CFT duality has established a mapping between quantities in the bulk AdS black-hole physics and observables in a boundary finite-temperature field theory. Such a relationship appears to be valid for an arbitrary number of spacetime dimensions, extrapolating the original formulations of Maldacena's correspondence. In the same sense properties like the hydrodynamic behavior of AdS black-hole fluctuations have been proved to be universal. We investigate in this work the complete quasinormal spectra of gravitational perturbations of dd-dimensional plane-symmetric AdS black holes (black branes). Holographically the frequencies of the quasinormal modes correspond to the poles of two-point correlation functions of the field-theory stress-energy tensor. The important issue of the correct boundary condition to be imposed on the gauge-invariant perturbation fields at the AdS boundary is studied and elucidated in a fully dd-dimensional context. We obtain the dispersion relations of the first few modes in the low-, intermediate- and high-wavenumber regimes. The sound-wave (shear-mode) behavior of scalar (vector)-type low-frequency quasinormal mode is analytically and numerically confirmed. These results are found employing both a power series method and a direct numerical integration scheme.Comment: added references, typos corrected, minor changes, final version for JHE

    Mach Cones in Quark Gluon Plasma

    Get PDF
    The experimental azimuthal dihadron distributions at RHIC show a double peak structure in the away side (Δϕ=π±1.2\Delta \phi = \pi \pm 1.2 rad.) for intermediate ptp_t particles. A variety of models have appeared trying to describe this modification. We will review most of them, with special emphasis in the Conical Flow scenario in which the observed shape is a consequence of the emission of sound by a supersonic high momentum particle propagating in the Quark Gluon Plasma.Comment: 8 pages, 3 figures, Invited plenary talk given at the 19th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions: Quark Matter 2006 (QM 2006), Shanghai, China, 14-20 Nov 200

    Intracellular APP Domain Regulates Serine-Palmitoyl-CoA Transferase Expression and Is Affected in Alzheimer's Disease

    Get PDF
    Lipids play an important role as risk or protective factors in Alzheimer's disease (AD), a disease biochemically characterized by the accumulation of amyloid beta peptides (Aβ), released by proteolytic processing of the amyloid precursor protein (APP). Changes in sphingolipid metabolism have been associated to the development of AD. The key enzyme in sphingolipid de novo synthesis is serine-palmitoyl-CoA transferase (SPT). In the present study we identified a new physiological function of APP in sphingolipid synthesis. The APP intracellular domain (AICD) was found to decrease the expression of the SPT subunit SPTLC2, the catalytic subunit of the SPT heterodimer, resulting in that decreased SPT activity. AICD function was dependent on Fe65 and SPTLC2 levels are increased in APP knock-in mice missing a functional AICD domain. SPTLC2 levels are also increased in familial and sporadic AD postmortem brains, suggesting that SPT is involved in AD pathology
    corecore