87 research outputs found

    European Nature and Health Network Initiatives

    Get PDF
    Attention to the importance of nature and human health linkages has increased in the past years, both in science and in policy. While knowledge about and recognition of the importance of nature and human health linkages are increasing rapidly, challenges still remain. Among them are building bridges between relevant but often still somewhat disconnected sectors and topics. There is a need to bring together researchers in the fields of health sciences, ecology, social sciences, sustainability sciences and other interdisciplinary sciences, as well as for cooperation between governments, companies and citizens. In this chapter, we introduce European networking initiatives aimed at building such bridges

    Moving fluoroscopy-based analysis of THA kinematics during unrestricted activities of daily living

    Get PDF
    Introduction: Knowledge of the accurate in-vivo kinematics of total hip arthroplasty (THA) during activities of daily living can potentially improve the in-vitro or computational wear and impingement prediction of hip implants. Fluoroscopy- based techniques provide more accurate kinematics compared to skin marker-based motion capture, which is affected by the soft tissue artefact. To date, stationary fluoroscopic machines allowed the measurement of only restricted movements, or only a portion of the whole motion cycle.Methods: In this study, a moving fluoroscopic robot was used to measure the hip joint motion of 15 THA subjects during whole cycles of unrestricted activities of daily living, i.e., overground gait, stair descent, chair rise and putting on socks.Results: The retrieved hip joint motions differed from the standard patterns applied for wear testing, demonstrating that current pre-clinical wear testing procedures do not reflect the experienced in-vivo daily motions of THA.Discussion: The measured patient-specific kinematics may be used as input to in vitro and computational simulations, in order to investigate how individual motion patterns affect the predicted wear or impingement

    Radiolucent lines in low-contact-stress mobile-bearing total knee arthroplasty: a blinded and matched case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Low-contact-stress (LCS) mobile-bearing total knee arthroplasty (TKA) (Johnson & Johnson, New Brunswick, NJ; previously: DePuy, Warsawa, USA) provides excellent functional results and wear rates in long-term follow-up analyses. Radiological analysis shows radiolucent lines (RLL) appearing immediately or two years after primary implantation, indicative of poor seat. Investigations proved RLL to be more frequent in uncemented TKA, resulting in a consensus to cement the tibial plateau, but their association with clinical findings and patients discomfort and knee pain is still unknown.</p> <p>Methods</p> <p>553 patients with 566 low-contact-stress (LCS) total knee prostheses were screened for continuous moderate knee pain. We compared tibial stress shielding classified by Ewald in patients suffering from pain with a matched, pain-free control group on blinded X-rays. We hypothesized a positive correlation between pain and radiolucency and higher frequency of such radiolucent lines in the most medial and most lateral zones of the tibial plateau.</p> <p>Results</p> <p>Twenty-eight patients suffered from knee pain in total. Radiolucencies were detected in 27 of these cases and in six out of 28 matched controls without knee pain. We could demonstrate a significant correlation of knee pain and radiolucencies, which appeared significantly more frequently in the outermost zones of the tibial plateau.</p> <p>Conclusion</p> <p>Our findings suggest that radiolucent lines, representing poor implant seat, about the tibial plateau are associated with knee pain in LCS patients. Radiolucencies are observed more often in noncemented LCS, and cementing the tibial plateau might improve implant seat and reduce both radiolucent lines and associated knee pain.</p

    Methotrexat Konzentrationen bei Osteosarkom Patienten in Dritträumen

    No full text

    LHC beam loss monitor system design

    No full text
    At the LHC a beam loss system will be installed for continuous surveillance of particle losses. The system is designed to prevent hardware destructions, to avoid magnet coil quenches and to provide quantitative loss values. Over 3000 ionization chambers will be used to initiate the beam abort if the loss rates exceed the quench levels. The time and beam energy dependent quench levels require the acquisition of chamber currents in the range from 50 pA to 0.5 mA and an update of the values every 89 mu s. The acquisition and control electronics will consist of a front end electronics near (< 400 m) to the ionization chambers and a threshold controller in the surface buildings. The front end will include a charge balance converter, a counter and multiplexer part. The charge balance converter is most suitable to cover the large dynamic range. The introduced error is smaller than few % in the required dynamic range. Six channels will be transmitted over one cable of up to 3 km length. The threshold controller will issue warnings and dump signals depending on the beam energy and the loss durations. (7 refs)

    Sarcome im Bereich des Sprunggelenkes: Amputation vs. Extremitätenerhalt

    No full text
    • …
    corecore