12 research outputs found
Decoherence of electron spin qubits in Si-based quantum computers
Direct phonon spin-lattice relaxation of an electron qubit bound by a donor
impurity or quantum dot in SiGe heterostructures is investigated. The aim is to
evaluate the importance of decoherence from this mechanism in several important
solid-state quantum computer designs operating at low temperatures. We
calculate the relaxation rate as a function of [100] uniaxial strain,
temperature, magnetic field, and silicon/germanium content for Si:P bound
electrons. The quantum dot potential is much smoother, leading to smaller
splittings of the valley degeneracies. We have estimated these splittings in
order to obtain upper bounds for the relaxation rate. In general, we find that
the relaxation rate is strongly decreased by uniaxial compressive strain in a
SiGe-Si-SiGe quantum well, making this strain an important positive design
feature. Ge in high concentrations (particularly over 85%) increases the rate,
making Si-rich materials preferable. We conclude that SiGe bound electron
qubits must meet certain conditions to minimize decoherence but that
spin-phonon relaxation does not rule out the solid-state implementation of
error-tolerant quantum computing.Comment: 8 figures. To appear in PRB-July 2002. Revisions include: some
references added/corrected, several typos fixed, a few things clarified.
Nothing dramati
The Effect of Proprioceptive Feedback on the Distribution of Sensory Information in a Model of an Undulatory Organism
In an animal, a crucial factor concerning the arrival of information at the sensors and subsequent transmission to the effectors, is how it is distributed. At the same time, higher animals also employ proprioceptive feedback so that their respective neural circuits have information regarding the state of the animal body. In order to disseminate what this practically means for the distribution of sensory information, we have modeled a segmented swimming organism (animat) coevolving its nervous system and body plan morphology. In a simulated aquatic environment, we find that animats artificially endowed with proprioceptive feedback are able to evolve completely decoupled central pattern generators (CPGs) meaning that they emerge without any connections made to neural circuits in adjacent body segments. Without such feedback however, we also find that the distribution of sensory information from the head of the animat becomes far more important, with adjacent CPG circuits becoming interconnected. Crucially, this demonstrates that where proprioceptive mechanisms are lacking, more effective delivery of sensory input is essential