2,114 research outputs found

    Efficient multiqubit entanglement via a spin-bus

    Get PDF
    We propose an experimentally feasible architecture with controllable long-range couplings built up from local exchange interactions. The scheme consists of a spin-bus, with strong, always-on interactions, coupled dynamically to external qubits of the Loss and DiVincenzo type. Long-range correlations are enabled by a spectral gap occurring in a finite-size chain. The bus can also form a hub for multiqubit entangling operations. We show how multiqubit gates may be used to efficiently generate WW-states (an important entanglement resource). The spin-bus therefore provides a route for scalable solid-state quantum computation, using currently available experimental resources.Comment: Published versio

    Caracterização de raças de Pyrenophora tritici-repentis, agente etiológico da mancha amarela do trigo, no sul do Brasil.

    Get PDF
    bitstream/CNPT-2010/40333/1/p-bp60.pd

    Can we always get the entanglement entropy from the Kadanoff-Baym equations? The case of the T-matrix approximation

    Full text link
    We study the time-dependent transmission of entanglement entropy through an out-of-equilibrium model interacting device in a quantum transport set-up. The dynamics is performed via the Kadanoff-Baym equations within many-body perturbation theory. The double occupancy <n^R↑n^R↓>< \hat{n}_{R \uparrow} \hat{n}_{R \downarrow} >, needed to determine the entanglement entropy, is obtained from the equations of motion of the single-particle Green's function. A remarkable result of our calculations is that <n^R↑n^R↓>< \hat{n}_{R \uparrow} \hat{n}_{R \downarrow} > can become negative, thus not permitting to evaluate the entanglement entropy. This is a shortcoming of approximate, and yet conserving, many-body self-energies. Among the tested perturbation schemes, the TT-matrix approximation stands out for two reasons: it compares well to exact results in the low density regime and it always provides a non-negative <n^R↑n^R↓>< \hat{n}_{R \uparrow} \hat{n}_{R \downarrow} >. For the second part of this statement, we give an analytical proof. Finally, the transmission of entanglement across the device is diminished by interactions but can be amplified by a current flowing through the system.Comment: 6 pages, 6 figure

    Global control and fast solid-state donor electron spin quantum computing

    Get PDF
    We propose a scheme for quantum information processing based on donor electron spins in semiconductors, with an architecture complementary to the original Kane proposal. We show that a naive implementation of electron spin qubits provides only modest improvement over the Kane scheme, however through the introduction of global gate control we are able to take full advantage of the fast electron evolution timescales. We estimate that the latent clock speed is 100-1000 times that of the nuclear spin quantum computer with the ratio T2/TopsT_{2}/T_{ops} approaching the 10610^{6} level.Comment: 9 pages, 9 figure
    • …
    corecore