45 research outputs found

    Omega and AntiOmega production in Pb+Pb and p+p collisions at 30, 40 and 158 AGeV

    Full text link
    We report preliminary results on Omega and AntiOmega production in central Pb+Pb collisions at 30, 40 and 158 AGeV and p + p interactions at 158 GeV. The midrapidity AntiOmega/Omega ratio is estimated to be 0.45 +- 0.05 and 0.41 +- 0.18 for central Pb+Pb collisions at 158 and 40 AGeV, respectively. The corresponding value for 158 GeV p+p interactions is 0.67 +- 0.62. For central Pb+Pb collisions at 158 AGeV fully corrected distributions are obtained. The inverse slope parameters of the transverse mass spectrum and total yields are T(Omega) = 276 +- 23 MeV, = 0.47 +- 0.07 and T(AntiOmega) = 285 +- 39 MeV, = 0.15 +- 0.02.Comment: Contribution to the proceedings of "Strangeness in Quark Matter 2003" (March 2003, Atlantic Beach NC, USA), to be published in Journal of Physics G., 6 pages, 6 figure

    Strange Hadron Resonances and QGP Freeze-out

    Get PDF
    We describe how the abundance and distribution of hyperon resonances can be used to probe freeze-out conditions. We demonstrate that resonance yields allow us to measure the time scales of chemical and thermal freeze-outs. This should permit a direct differentiation between the explosive sudden, and staged adiabatic freeze-out scenarios.Comment: 8 pages including 4 figures, in Proceedings of Strange Quark Matter 2001, Frankfurt, submitted to J. Phys. G version 2: refernces corrected/added, numercial corrections in figures 2,3,

    Relativistic Nucleus-Nucleus Collisions: from the BEVALAC to RHIC

    Full text link
    I briefly describe the initial goals of relativistic nuclear collisions research, focusing on the LBL Bevatron/Bevalac facility in the 1970's. An early concept of high hadronic density fireball formation, and subsequent isentropic decay (preserving information as to the high density stage) led to an outline of physics observables that could determine the nuclear matter equation of state at several times nuclear ground state matter density. With the advent of QCD the goal of locating, and characterizing the hadron-parton deconfinement phase transformation suggested the need for higher s\sqrt{s}, the research thus moving to the BNL AGS and CERN SPS, finally to RHIC at BNL. A set of physics observables is discussed where present data span the entire s\sqrt{s} domain, from Bevalac and SIS at GSI, to top RHIC energy. Referring, selectively, to data concerning bulk hadron production, the overall s\sqrt{s} evolution of directed and radial flow observables, and of pion pair Bose-Einstein correlation are discussed. The hadronization process is studied in the grand canonical statistical model. The resulting hadronization points in the plane T vs. μB\mu_B converge onto the parton-hadron phase boundary predicted by finite μB\mu_B lattice QCD, from top SPS to RHIC energy. At lower SPS and top AGS energy a steep strangeness maximum occurs at which the Wroblewski parameter λs\lambda_s \approx 0.6; a possible connection to the QCD critical point is discussed. Finally the unique new RHIC physics is addressed: high pTp_T hadron suppression and jet "tomography".Comment: 19 pages, 11 figure

    Review of Results from the NA49 Collaboration

    Full text link
    New results of the NA49 collaboration on strange particle production are presented. Rapidity and transverse mass spectra as well as total multiplicities are discussed. The study of their evolution from AGS over SPS to the highest RHIC energy reveals a couple of interesting features. These include a sudden change in the energy dependence of the mt-spectra and of the yields of strange hadrons around 30 AGeV. Both are found to be difficult to be reproduced in a hadronic scenario, but might be an indication for a phase transition to a quark gluon plasma.Comment: 8 pages, 7 figures. Proceedings of the SQM04 conference, Capetow

    System-size dependence

    Full text link
    The final state in The final state in heavy-ion collisions has a higher degree of strangeness saturation than the one produced in collisions between elementary particles like p-p or p-pˉ\bar{p}. A systematic analysis of this phenomenon is made for C-C, Si-Si and Pb-Pb collisions at the CERN SPS collider and for AuAuAu-Au collisions at RHIC and at AGS energies. Strangeness saturation is shown to increase smoothly with the number of participants at AGS, CERN and RHIC energies.Comment: 5 pages, 5 figures, presented at SQM2003 conferenc

    Dynamics and freeze-out of hadron resonances at RHIC

    Get PDF
    Yields, rapidity and transverse momentum spectra of Δ++(1232)\Delta^{++}(1232), Λ(1520)\Lambda(1520), Σ±(1385)\Sigma^\pm(1385) and the meson resonances K0(892)K^0(892), Φ\Phi, ρ0\rho^0 and f0(980)f_0(980) are predicted. Hadronic rescattering leads to a suppression of reconstructable resonances, especially at low pp_\perp. A mass shift of the ρ\rho of 10 MeV is obtained from the microscopic simulation, due to late stage ρ\rho formation in the cooling pion gas.Comment: Proceedings of the Strange Quark Matter 2003, eprint version differs from published versio

    Space-time analysis of reaction at RHIC

    Full text link
    Space-time information about the Au-Au collisions produced at RHIC are key tools to understand the evolution of the system and especially assess the presence of collective behaviors. Using a parameterization of the system's final state relying on collective expansion, we show that pion source radii can be tied together with transverse mass spectra and elliptic flow within the same framework. The consistency between these different measures provide a solid ground to understand the characteristics of collective flow and especially the possible peculiar behavior of particles such as Xi, Omega or phi. The validity of the short time scales that are extracted from fits to the pion source size is also addressed. The wealth of new data that will soon be available from Au-Au collisions at sqrt{s_{NN}} = 200 GeV, will provide a stringet test of the space-time analysis framework developped in these proceedings.Comment: Invited talk given at the SQM2003 conference (March 2003), to be published in Journal of Physics G. 10 pages, 3 figure

    Strangeness from 20 AGeV to 158 AGeV

    Full text link
    New results from the energy scan programme of NA49, in particular kaon production at 30 AGeV and phi production at 40 and 80 AGeV are presented. The K+/pi+ ratio shows a pronounced maximum at 30 AGeV; the kaon slope parameters are constant at SPS energies. Both findings support the scenario of a phase transition at about 30 AGeV beam energy. The phi/pi ratio increases smoothly with beam energy, showing an energy dependence similar to K-/pi-. The measured particle yields can be reproduced by a hadron gas model, with chemical freeze-out parameters on a smooth curve in the T-muB plane. The transverse spectra can be understood as resulting from a rapidly expanding, locally equilibrated source. No evidence for an earlier kinetic decoupling of heavy hyperons is found.Comment: Contribution to the proceedings of "Strangeness in Quark Matter 2003" (March 2003, Atlantic Beach NC, USA), to be published in Journal of Physics G. 11 pages, 14 figure

    Lambda production in central Pb+Pb collisions at CERN-SPS energies

    Full text link
    In this paper we present recent results from the NA49 experiment for Λ\Lambda and Λˉ\bar{\Lambda} hyperons produced in central Pb+Pb collisions at 40, 80 and 158 A\cdotGeV. Transverse mass spectra and rapidity distributions for Λ\Lambda are shown for all three energies. The shape of the rapidity distribution becomes flatter with increasing beam energy. The multiplicities at mid-rapidity as well as the total yields are studied as a function of collision energy including AGS measurements. The ratio Λ/π\Lambda/\pi at mid-rapidity and in 4π\pi has a maximum around 40 A\cdotGeV. In addition, Λˉ\bar{\Lambda} rapidity distributions have been measured at 40 and 80 A\cdotGeV, which allows to study the Λˉ\bar{\Lambda}/Λ\Lambda ratio.Comment: SQM proceedings. J. Phys. G: Nucl. Part. Phys.: submitte
    corecore