3,741 research outputs found
Quark Recombination and Heavy Quark Diffusion in Hot Nuclear Matter
We discuss resonance recombination for quarks and show that it is compatible
with quark and hadron distributions in local thermal equilibrium. We then
calculate realistic heavy quark phase space distributions in heavy ion
collisions using Langevin simulations with non-perturbative T-matrix
interactions in hydrodynamic backgrounds. We hadronize the heavy quarks on the
critical hypersurface given by hydrodynamics after constructing a criterion for
the relative recombination and fragmentation contributions. We discuss the
influence of recombination and flow on the resulting heavy meson and single
electron R_AA and elliptic flow. We will also comment on the effect of
diffusion of open heavy flavor mesons in the hadronic phase.Comment: Contribution to Quark Matter 2011, submitted to J.Phys.G; 4 pages, 5
figure
Early Time Evolution of High Energy Heavy Ion Collisions
We solve the Yang-Mills equations in the framework of the
McLerran-Venugopalan model for small times tau after a collision of two nuclei.
An analytic expansion around tau=0 leads to explicit results for the field
strength and the energy momentum tensor of the gluon field at early times. We
then discuss constraints for the energy density, pressure and flow of the
plasma phase that emerges after thermalization of the gluon field.Comment: 4 pages, 1 figure; contribution to Quark Matter 2006; submitted to J.
Phys.
Decoherence and Entropy Production in Relativistic Nuclear Collisions
Short thermalization times of less than 1 fm/c for quark and gluon matter
have been suggested by recent experiments at the Relativistic Heavy Ion
Collider (RHIC). It has been difficult to justify this rapid thermalization in
first-principle calculations based on perturbation theory or the color glass
condensate picture. Here, we address the related question of the decoherence of
the gluon field, which is a necessary component of thermalization. We present a
simplified leading-order computation of the decoherence time of a gluon
ensemble subject to an incoming flux of Weizsacker-Williams gluons. We also
discuss the entropy produced during the decoherence process and its relation to
the entropy in the final state which has been measured experimentally.Comment: 8 pages, 3 figure
Meteoritic Material Recovered from the 07 March 2018 Meteorite Fall into the Olympic Coast National Marine Sanctuary
On 07 March 2018 at 20:05 local time (08 March 03:05 UTC), a dramatic meteor occurred over Olympic Coast National Marine Sanctuary (OCNMS) off of the Washington state coast (OCNMS fall, henceforth). Data to include seismometry (from both on-shore and submarine seismometers), weather radar imagery (Figure 1), and a moored weather buoy, were used to accurately identify the fall site. The site was visited by the exploration vessel E/V Nautilus (Ocean Exploration Trust) on 01 July 2018 [1] and by the research vessel R/V Falkor (Schmidt Ocean Institute) from 03-06 June 2019. Remotely operated vehicles (ROVs) from both vessels were used to search for meteorites and sample seafloor sediments. These expeditions performed the first attempts to recover meteorites from a specific observed fall in the open ocean. Analysis of weather radar data indicates that this fall was unusually massive and featured meteorites of unusually high mechanical toughness, such that large meteorites were disproportionately produced compared to other meteorite falls (Figure 2)[2-4]. We report the recovery of many (>100) micrometeorite-sized melt spherules and other fragments, and one small (~1mm3 ) unmelted meteorite fragment identified to date. Approximately 80% of the fragments were recovered from a single sample, collected from a round pit in the seafloor sediment. Melt spherules are almost exclusively type I iron-rich spherules with little discernible oxidation. Analyses are currently underway to attempt to answer the primary science question by identifying the parent meteorite type. Also, differences in the number and nature of samples collected by Nautilus and Falkor reveal a distinct loss rate to oxidation over the 15 months following the fall that is useful to inform future recovery efforts
The Opera Instrument: An Advanced Curation Development for Mars Sample Return Organic Contamination Monitoring
Mars Sample Return (MSR) requires strict organic contamination control (CC) and contamination knowledge (CK) as outlined by the Mars 2020 Organic Contamination Panel (OCP). This includes a need to monitor surficial organic contamination to a ng/sq. cm sensitivity level. Archiving and maintaining this degree of surface cleanliness may be difficult but has been achieved. MSR's CK effort will be very important because all returned samples will be studied thoroughly and in minute detail. Consequently, accurate CK must be collected and characterized to best interpret scientific results from the returned samples. The CK data are not only required to make accurate measurements and interpretations for carbon-depleted martian samples, but also to strengthen the validity of science investigations performed on the samples. The Opera instrument prototype is intended to fulfill a CC/CK role in the assembly, cleaning, and overall contamination history of hardware used in the MSR effort, from initial hardware assembly through post-flight sample curation. Opera is intended to monitor particulate and organic contamination using quartz crystal microbalances (QCMs), in a self-contained portable package that is cleanroom-compliant. The Opera prototype is in initial development capable of approximately 100 ng/sq. cm organic contamination sensitivity, with additional development planned to achieve 1 ng/sq. cm. The Opera prototype was funded by the 2017 NASA Johnson Space Center Innovation Charge Account (ICA), which provides funding for small, short-term projects
The QCD confinement transition: hadron formation
We review the foundations and the applications of the statistical and the
quark recombination model as hadronization models.Comment: 45 pages, 16 figures, accepted for publication in Landolt-Boernstein
Volume 1-23
Jet Correlations of Identified Particles in PHENIX
Azimuthal two particle correlations at intermediate with one of the
particles identified have been measured at PHENIX. Trigger () baryons and mesons show little significant difference in the number of
associated particles () independent of centrality. For
inclusive hadron triggers with , associated
fragmentation particles with show a higher baryon to
meson ratio on the away side.Comment: talk given at Quark Matter 2004, 4 pages 4 figur
Recombination Models
We review the current status of recombination and coalescence models that
have been successfully applied to describe hadronization in heavy ion
collisions at RHIC energies. Basic concepts as well as actual implementations
of the idea are discussed. We try to evaluate where we stand in our
understanding at the moment and what remains to be done in the future.Comment: Plenary Talk at Quark Matter 2004, submitted to J. Phys. G, 8 pages,
3 figure
Resummation of nuclear enhanced higher twist in the Drell Yan process
We investigate higher twist contributions to the transverse momentum
broadening of Drell Yan pairs in proton nucleus collisions. We revisit the
contribution of matrix elements of twist-4 and generalize this to matrix
elements of arbitrary twist. An estimate of the maximal nuclear broadening
effect is derived. A model for nuclear enhanced matrix elements of arbitrary
twist allows us to give the result of a resummation of all twists in closed
form. Subleading corrections to the maximal broadening are discussed
qualitatively.Comment: 10 pages, 5 figures; v2: minor changes in text, acknowledgement
added; v3: mistake in fig. 1 correcte
- …