1,067 research outputs found

    Guidelines and Methods for Conducting Porperty Transfer Site Histories

    Get PDF
    HWRIC Project 90-077NTIS PB91-10508

    Zirconium, Barium, Lanthanum and Europium Abundances in Open Clusters

    Full text link
    We present an analysis of the s-process elements Zr, Ba, and La and the r-process element Eu in a sample of 50 stars in 19 open clusters. Stellar abundances of each element are based on measures of a minimum of two lines per species via both equivalent width and spectrum synthesis techniques. We investigate cluster mean neutron-capture abundance trends as a function of cluster age and location in the Milky Way disk and compare them to results found in other studies in the literature. We find a statistically significant trend of increasing cluster [Ba/Fe] as a function of decreasing cluster age, in agreement with recent findings for other open cluster samples, supporting the increased importance of low-mass asymptotic giant branch stars to the generation of s-process elements. However, the other s-process elements, [La/Fe] and [Zr/Fe], do not show similar dependences, in contrast to theoretical expectations and the limited observational data from other studies. Conversely, cluster [Eu/Fe] ratios show a slight increase with increasing cluster age, although with marginal statistical significance. Ratios of [s/r]-process abundances, [Ba/Eu] and [La/Eu], however, show more clearly the increasing efficiency of s-process relative to r-process enrichment in open cluster chemical evolution, with significant increases among younger clusters. Last, cluster neutron-capture element abundances appear to be independent of Galactocentric distance. We conclude that a homogeneous analysis of a larger sample of open clusters is needed to resolve the apparent discrepant conclusions between different studies regarding s-process element abundance trends with age to better inform models of galactic chemical evolution.Comment: 24 pages, 13 figures, 10 tables; published in The Astronomical Journa

    Iron abundances from high-resolution spectroscopy of the open clusters NGC 2506, NGC 6134, and IC 4651

    Full text link
    This is the first of a series of papers devoted to derive the metallicity of old open clusters in order to study the time evolution of the chemical abundance gradient in the Galactic disk. We present detailed iron abundances from high resolution (R~40000) spectra of several red clump and bright giant stars in the open clusters IC 4651, NGC 2506 and NGC 6134. We observed 4 stars of NGC 2506, 3 stars of NGC 6134, and 5 stars of IC 4651 with the FEROS spectrograph at the ESO 1.5 m telescope; moreover, 3 other stars of NGC 6134 were observed with the UVES spectrograph on Kueyen (VLT UT2). After excluding the cool giants near the red giant branch tip (one in IC 4651 and one in NGC 2506), we found overall [Fe/H] values of -0.20 +/- 0.01, rms = 0.02 dex (2 stars) for NGC 2506, +0.15 +/- 0.03, rms = 0.07 dex (6 stars) for NGC 6134, and +0.11 +/- 0.01, rms = 0.01 dex (4 stars) for IC 4651. The metal abundances derived from line analysis for each star were extensively checked using spectrum synthesis of about 30 to 40 Fe I lines and 6 Fe II lines. Our spectroscopic temperatures provide reddening values in good agreement with literature data for these clusters, strengthening the reliability of the adopted temperature and metallicity scale. Also, gravities from the Fe equilibrium of ionization agree quite well with expectations based on cluster distance moduli and evolutionary masses.Comment: 13 pages, 7 figures, uses aa.cls, accepted for publication on Astronomy & Astrophysic

    Extended Stromgren Photoelectric Photometry in NGC 752

    Full text link
    Photoelectric photometry on the extended Stromgren system (uvbyCa) is presented for 7 giants and 21 main sequence stars in the old open cluster, NGC 752. Analysis of the hk data for the turnoff stars yields a new determination of the cluster mean metallicity. From 10 single-star members, [Fe/H] = -0.06 +/- 0.03, where the error quoted is the standard error of the mean and the Hyades abundance is set at [Fe/H] = +0.12. This result is unchanged if all 20 stars within the limits of the hk metallicity calibration are included. The derived [Fe/H] is in excellent agreement with past estimates using properly-zeroed m1 data, transformed moderate-dispersion spectroscopy, and recent high dispersion spectroscopy.Comment: 14 tex'd pages including 2 tables; 2 separate files with eps figures Accepted for PASP March 200
    corecore