818 research outputs found

    Symmetric hyperbolic systems for Bianchi equations

    Full text link
    We obtain a family of first-order symmetric hyperbolic systems for the Bianchi equations. They have only physical characteristics: the light cone and timelike hypersurfaces. In the proof of the hyperbolicity, new positivity properties of the Bel tensor are used.Comment: latex, 7 pages, accepted for publication in Class. Quantum Gra

    Binary black hole spacetimes with a helical Killing vector

    Full text link
    Binary black hole spacetimes with a helical Killing vector, which are discussed as an approximation for the early stage of a binary system, are studied in a projection formalism. In this setting the four dimensional Einstein equations are equivalent to a three dimensional gravitational theory with a SL(2,C)/SO(1,1)SL(2,\mathbb{C})/SO(1,1) sigma model as the material source. The sigma model is determined by a complex Ernst equation. 2+1 decompositions of the 3-metric are used to establish the field equations on the orbit space of the Killing vector. The two Killing horizons of spherical topology which characterize the black holes, the cylinder of light where the Killing vector changes from timelike to spacelike, and infinity are singular points of the equations. The horizon and the light cylinder are shown to be regular singularities, i.e. the metric functions can be expanded in a formal power series in the vicinity. The behavior of the metric at spatial infinity is studied in terms of formal series solutions to the linearized Einstein equations. It is shown that the spacetime is not asymptotically flat in the strong sense to have a smooth null infinity under the assumption that the metric tends asymptotically to the Minkowski metric. In this case the metric functions have an oscillatory behavior in the radial coordinate in a non-axisymmetric setting, the asymptotic multipoles are not defined. The asymptotic behavior of the Weyl tensor near infinity shows that there is no smooth null infinity.Comment: to be published in Phys. Rev. D, minor correction

    Ultracoherence and Canonical Transformations

    Get PDF
    The (in)finite dimensional symplectic group of homogeneous canonical transformations is represented on the bosonic Fock space by the action of the group on the ultracoherent vectors, which are generalizations of the coherent states.Comment: 24 page

    Lower Spectral Branches of a Particle Coupled to a Bose Field

    Full text link
    The structure of the lower part (i.e. ϵ\epsilon -away below the two-boson threshold) spectrum of Fr\"ohlich's polaron Hamiltonian in the weak coupling regime is obtained in spatial dimension d3d\geq 3. It contains a single polaron branch defined for total momentum pG(0)p\in G^{(0)} , where G(0)RdG^{(0)}\subset {\mathbb R}^d is a bounded domain, and, for any pRdp\in {\mathbb R}^d, a manifold of polaron + one-boson states with boson momentum qq in a bounded domain depending on pp. The polaron becomes unstable and dissolves into the one boson manifold at the boundary of G(0)G^{(0)}. The dispersion laws and generalized eigenfunctions are calculated

    On hybrid states of two and three level atoms

    Full text link
    We calculate atom-photon resonances in the Wigner-Weisskopf model, admitting two photons and choosing a particular coupling function. We also present a rough description of the set of resonances in a model for a three-level atom coupled to the photon field. We give a general picture of matter-field resonances these results fit into.Comment: 33 pages, 12 figure

    On the Theory of Superfluidity in Two Dimensions

    Full text link
    The superfluid phase transition of the general vortex gas, in which the circulations may be any non-zero integer, is studied. When the net circulation of the system is not zero the absence of a superfluid phase is shown. When the net circulation of the vortices vanishes, the presence of off-diagonal long range order is demonstrated and the existence of an order parameter is proposed. The transition temperature for the general vortex gas is shown to be the Kosterlitz---Thouless temperature. An upper bound for the average vortex number density is established for the general vortex gas and an exact expression is derived for the Kosterlitz---Thouless ensemble.Comment: 22 pages, one figure, written in plain TeX, published in J. Phys. A24 (1991) 502

    Higher order corrections for shallow-water solitary waves: elementary derivation and experiments

    Full text link
    We present an elementary method to obtain the equations of the shallow-water solitary waves in different orders of approximation. The first two of these equations are solved to get the shapes and propagation velocities of the corresponding solitary waves. The first-order equation is shown to be equivalent to the Korteweg-de Vries (KdV) equation, while the second-order equation is solved numerically. The propagation velocity found for the solitary waves of the second-order equation coincides with a known expression, but it is obtained in a simpler way. By measuring the propagation velocity of solitary waves in the laboratory, we demonstrate that the second-order theory gives a considerably improved fit to experimental results.Comment: 15 pages, 8 EPS figures, uses IOP class file for LaTeX2e, slightly revised versio

    Extensions of the Stoney formula for substrate curvature to configurations with thin substrates or large deformations

    Get PDF
    Two main assumptions which underlie the Stoney formula relating substrate curvature to mis-match strain in a bonded thin film are that the film is very thin compared to the substrate, and the deformations are infinitesimally small. Expressions for the curvature-strain relastionship are derived for cases in which thses assumptions are relaxed, thereby providing a biasis for interpretation of experimental observations for a broader class of film-substrate configurations
    corecore