17,178 research outputs found
Asymptotic simplicity and static data
The present article considers time symmetric initial data sets for the vacuum
Einstein field equations which in a neighbourhood of infinity have the same
massless part as that of some static initial data set. It is shown that the
solutions to the regular finite initial value problem at spatial infinity for
this class of initial data sets extend smoothly through the critical sets where
null infinity touches spatial infinity if and only if the initial data sets
coincide with static data in a neighbourhood of infinity. This result
highlights the special role played by static data among the class of initial
data sets for the Einstein field equations whose development gives rise to a
spacetime with a smooth conformal compactification at null infinity.Comment: 25 page
General Relativistic Scalar Field Models in the Large
For a class of scalar fields including the massless Klein-Gordon field the
general relativistic hyperboloidal initial value problems are equivalent in a
certain sense. By using this equivalence and conformal techniques it is proven
that the hyperboloidal initial value problem for those scalar fields has an
unique solution which is weakly asymptotically flat. For data sufficiently
close to data for flat spacetime there exist a smooth future null infinity and
a regular future timelike infinity.Comment: 22 pages, latex, AGG 1
A Method for Calculating the Structure of (Singular) Spacetimes in the Large
A formalism and its numerical implementation is presented which allows to
calculate quantities determining the spacetime structure in the large directly.
This is achieved by conformal techniques by which future null infinity
(\Scri{}^+) and future timelike infinity () are mapped to grid points on
the numerical grid. The determination of the causal structure of singularities,
the localization of event horizons, the extraction of radiation, and the
avoidance of unphysical reflections at the outer boundary of the grid, are
demonstrated with calculations of spherically symmetric models with a scalar
field as matter and radiation model.Comment: 29 pages, AGG2
Initial boundary value problems for Einstein's field equations and geometric uniqueness
While there exist now formulations of initial boundary value problems for
Einstein's field equations which are well posed and preserve constraints and
gauge conditions, the question of geometric uniqueness remains unresolved. For
two different approaches we discuss how this difficulty arises under general
assumptions. So far it is not known whether it can be overcome without imposing
conditions on the geometry of the boundary. We point out a natural and
important class of initial boundary value problems which may offer
possibilities to arrive at a fully covariant formulation.Comment: 19 page
Site-selective spectroscopy and level ordering in C-phycocyanin
We present a combined fluorescence and hole-burning study of the biliprotein C-phycocyanin. Sharp zero-phonon holes compare with a broad structureless fluorescence. This finding is rationalized in terms of the special level structure in this pigment, the fast energy-transfer processes and a lack of correlation of the energies of the emissive states
- …