714 research outputs found
Imaging as an End Point in Ischemia Trials
Imaging of cardiac function and anatomy has advanced at an exponential rate over the past two decades. Our ability to quantitatively assess the degree of myocardial ischemia and accurately define the vascular anatomy using noninvasive techniques is greater than ever before. Current advances is cardiac imaging are allowing us to more safely assess patients for myocardial ischemia and better understand the prognostic implications of our findings. This review summarizes the current state of knowledge in cardiac imaging for the assessment of cardiac ischemia with a focus on the use of cardiac MRI
Acute reperfusion intramyocardial hemorrhage leads to regional chronic iron deposition in the heart
Intramyocardial hemorrhage commonly occurs in large reperfused myocardial infarctions. However, its long-term fate remains unexplored. We hypothesized that acute reperfusion intramyocardial hemorrhage leads to chronic iron deposition
A semiclassical analysis of the Efimov energy spectrum in the unitary limit
We demonstrate that the (s-wave) geometric spectrum of the Efimov energy
levels in the unitary limit is generated by the radial motion of a primitive
periodic orbit (and its harmonics) of the corresponding classical system. The
action of the primitive orbit depends logarithmically on the energy. It is
shown to be consistent with an inverse-squared radial potential with a lower
cut-off radius. The lowest-order WKB quantization, including the Langer
correction, is shown to reproduce the geometric scaling of the energy spectrum.
The (WKB) mean-squared radii of the Efimov states scale geometrically like the
inverse of their energies. The WKB wavefunctions, regularized near the
classical turning point by Langer's generalized connection formula, are
practically indistinguishable from the exact wave functions even for the lowest
() state, apart from a tiny shift of its zeros that remains constant for
large .Comment: LaTeX (revtex 4), 18pp., 4 Figs., already published in Phys. Rev. A
but here a note with a new referece is added on p. 1
Colloids dragged through a polymer solution: experiment, theory and simulation
We present micro-rheological measurments of the drag force on colloids pulled
through a solution of lambda-DNA (used here as a monodisperse model polymer)
with an optical tweezer. The experiments show a violation of the
Stokes-Einstein relation based on the independently measured viscosity of the
DNA solution: the drag force is larger than expected. We attribute this to the
accumulation of DNA infront of the colloid and the reduced DNA density behind
the colloid. This hypothesis is corroborated by a simple drift-diffusion model
for the DNA molecules, which reproduces the experimental data surprisingly
well, as well as by corresponding Brownian dynamics simulations.Comment: 9 pages, 13 figures, 3 table
The interaction of core-collapse supernova ejecta with a companion star
The progenitors of many CCSNe are expected to be in binary systems. After the
SN explosion, the companion may suffer from mass stripping and be shock heated
as a result of the impact of the SN ejecta. If the binary system is disrupted,
the companion is ejected as a runaway and hypervelocity star. By performing a
series of 3D hydrodynamical simulations of the collision of SN ejecta with the
companion star, we investigate how CCSN explosions affect their companions. We
use the BEC code to construct the detailed companion structure at the time of
SN explosion. The impact of the SN blast wave on the companion is followed by
means of 3D SPH simulations using the Stellar GADGET code. For main-sequence
(MS) companions, we find that the amount of removed mass, impact velocity, and
chemical contamination of the companion that results from the impact of the SN
ejecta, strongly increases with decreasing binary separation and increasing
explosion energy. Their relationship can be approximately fitted by power laws,
which is consistent with the results obtained from impact simulations of
SNe~Ia. However, we find that the impact velocity is sensitive to the momentum
profile of the outer SN ejecta and, in fact, may decrease with increasing
ejecta mass, depending on the modeling of the ejecta. Because most companions
to Ib/c CCSNe are in their MS phase at the moment of the explosion, combined
with the strongly decaying impact effects with increasing binary separation, we
argue that the majority of these SNe lead to inefficient mass stripping and
shock heating of the companion star following the impact of the ejecta. Our
simulations show that the impact effects of Ib/c SN ejecta on the structure of
MS companions, and thus their long-term post-explosion evolution, is in general
not dramatic. We find that at most 10% of their mass is lost, and their
resulting impact velocities are less than 100 km/s.Comment: Accepted for publication in Astronomy and Astrophysics, some minor
typographical errors are fixed, the affiliation of second author is correcte
- âŠ