4,072 research outputs found
Trace fossils of microbial colonization on Mars: Criteria for search and for sample return
The recent discovery of microbial trace-fossil formation in the frigid Ross Desert of Antarctica suggests that early primitive life on Mars may have left behind similar signatures. These trace fossils are apparent as chemical or physical changes in rock (or sediment) structure (or chemistry) caused by the activity of organisms. Life on Mars, if it ever existed, almost certainly did not evolve above the level of microorganisms, and this should be considered in search for fossil life. For the reasons detailed here, microbial trace fossils seem to be a better and more realistic target for search than would be true microbial fossils (remnants of cellular structures)
Endolithic microbial model for Martian exobiology: The road to extinction
Martian exobiology is based on the assumption that on early Mars, liquid water was present and that conditions were suitable for the evolution of life. The cause for life to disappear from the surface and the recognizable fingerprints of past microbial activity preserved on Mars are addressed. The Antarctic cryptoendolithic microbial ecosystem as a model for extinction in the deteriorating Martian environment is discussed
Local Strategy Improvement for Parity Game Solving
The problem of solving a parity game is at the core of many problems in model
checking, satisfiability checking and program synthesis. Some of the best
algorithms for solving parity game are strategy improvement algorithms. These
are global in nature since they require the entire parity game to be present at
the beginning. This is a distinct disadvantage because in many applications one
only needs to know which winning region a particular node belongs to, and a
witnessing winning strategy may cover only a fractional part of the entire game
graph.
  We present a local strategy improvement algorithm which explores the game
graph on-the-fly whilst performing the improvement steps. We also compare it
empirically with existing global strategy improvement algorithms and the
currently only other local algorithm for solving parity games. It turns out
that local strategy improvement can outperform these others by several orders
of magnitude
Multidimensional perfect fluid cosmology with stable compactified internal dimensions
Multidimensional cosmological models in the presence of a bare cosmological
constant and a perfect fluid are investigated under dimensional reduction to
4-dimensional effective models. Stable compactification of the internal spaces
is achieved for a special class of perfect fluids. The external space behaves
in accordance with the standard Friedmann model. Necessary restrictions on the
parameters of the models are found to ensure dynamical behavior of the external
(our) universe in agreement with observations.Comment: 11 pages, Latex2e, uses IOP packages, submitted to Class.Quant.Gra
Third order perturbations of a zero-pressure cosmological medium: Pure general relativistic nonlinear effects
We consider a general relativistic zero-pressure irrotational cosmological
medium perturbed to the third order. We assume a flat Friedmann background but
include the cosmological constant. We ignore the rotational perturbation which
decays in expanding phase. In our previous studies we discovered that, to the
second-order perturbation, except for the gravitational wave contributions, the
relativistic equations coincide exactly with the previously known Newtonian
ones. Since the Newtonian second-order equations are fully nonlinear, any
nonvanishing third and higher order terms in the relativistic analyses are
supposed to be pure relativistic corrections. In this work we derive such
correction terms appearing in the third order. Continuing our success in the
second-order perturbations we take the comoving gauge. We discover that the
third-order correction terms are of -order higher than the second-order
terms where  is a gauge-invariant combination related to the
three-space curvature perturbation in the comoving gauge; compared with the
Newtonian potential we have  to the linear
order. Therefore, the pure general relativistic effects are of -order
higher than the Newtonian ones. The corrections terms are independent of the
horizon scale and depend only on the linear order gravitational potential
perturbation strength. From the temperature anisotropy of cosmic microwave
background we have . Therefore, our present result reinforces our
previous important practical implication that near current era one can use the
large-scale Newtonian numerical simulation more reliably even as the simulation
scale approaches near the horizon.Comment: 9 pages, no figur
Signal peptide peptidases and gamma-secretase: Cousins of the same protease family?
Signal peptide peptidase (SPIP) is an unusual aspartyl protease, which mediates clearance of signal peptides by proteolysis within the endoplasmic reticulum (ER). Like presenilins, which provide the proteolytically active subunit of the,gamma-secretase complex, SPP contains a conserved GxGD motif in its C-terminal domain which is critical for its activity. While SPIP is known to be an aspartyl protease of the GxGD type, several presenilin homologues/SPP-like proteins (PSHs/ SPPL) of unknown function have been identified by database searches. In contrast to SPP and SPPL3, which are both restricted to the endoplasmic reticulum, SPPL2b is targeted through the secretory pathway to endosomes/lysosomes. As suggested by the differential subcellular localization of SPPL2b and SPPL3 distinct phenotypes were found upon antisense gripNA-mediated knockdown in zebrafish. spp and sppl3 knockdowns in zebrafish result in cell death within the central nervous system, whereas reduction of sppl2b expression causes erythrocyte accumulation in an enlarged caudal vein. Moreover, expression of D/A mutants of the putative C-terminal active sites of spp, sppl2, and spp13 produced phenocopies of the respective knockdown phenotypes. These data suggest that all investigated PSHs/SPPLs are members of the novel family of GxGD aspartyl proteases. More recently, it was shown that SPPL2b utilizes multiple intramembrane cleavages to liberate the TNF(x intracellular domain into the cytosol and to release the C-terminal counterpart into the lumen. These findings suggest common principles of intramembrane proteolysis by GxGD type aspartyl proteases. In this article,we will review the similarities of SPPs and gamma-secretase based on recent findings by us and others
Newtonian versus relativistic nonlinear cosmology
Both for the background world model and its linear perturbations Newtonian
cosmology coincides with the zero-pressure limits of relativistic cosmology.
However, such successes in Newtonian cosmology are not purely based on Newton's
gravity, but are rather guided ones by previously known results in Einstein's
theory. The action-at-a-distance nature of Newton's gravity requires further
verification from Einstein's theory for its use in the large-scale nonlinear
regimes. We study the domain of validity of the Newtonian cosmology by
investigating weakly nonlinear regimes in relativistic cosmology assuming a
zero-pressure and irrotational fluid. We show that, first, if we ignore the
coupling with gravitational waves the Newtonian cosmology is exactly valid even
to the second order in perturbation. Second, the pure relativistic correction
terms start appearing from the third order. Third, the correction terms are
independent of the horizon scale and are quite small in the large-scale near
the horizon. These conclusions are based on our special (and proper) choice of
variables and gauge conditions. In a complementary situation where the system
is weakly relativistic but fully nonlinear (thus, far inside the horizon) we
can employ the post-Newtonian approximation. We also show that in the
large-scale structures the post-Newtonian effects are quite small. As a
consequence, now we can rely on the Newtonian gravity in analyzing the
evolution of nonlinear large-scale structures even near the horizon volume.Comment: 8 pages, no figur
A Century of Cosmology
In the century since Einstein's anno mirabilis of 1905, our concept of the
Universe has expanded from Kapteyn's flattened disk of stars only 10 kpc across
to an observed horizon about 30 Gpc across that is only a tiny fraction of an
immensely large inflated bubble. The expansion of our knowledge about the
Universe, both in the types of data and the sheer quantity of data, has been
just as dramatic. This talk will summarize this century of progress and our
current understanding of the cosmos.Comment: Talk presented at the "Relativistic Astrophysics and Cosmology -
  Einstein's Legacy" meeting in Munich, Nov 2005. Proceedings will be published
  in the Springer-Verlag "ESO Astrophysics Symposia" series. 10 pages Latex
  with 2 figure
- …
