14,987 research outputs found

    Quasi-Adiabatic Continuation in Gapped Spin and Fermion Systems: Goldstone's Theorem and Flux Periodicity

    Full text link
    We apply the technique of quasi-adiabatic continuation to study systems with continuous symmetries. We first derive a general form of Goldstone's theorem applicable to gapped nonrelativistic systems with continuous symmetries. We then show that for a fermionic system with a spin gap, it is possible to insert π\pi-flux into a cylinder with only exponentially small change in the energy of the system, a scenario which covers several physically interesting cases such as an s-wave superconductor or a resonating valence bond state.Comment: 19 pages, 2 figures, final version in press at JSTA

    Experimental Upper Bound on Superradiance Emission from Mn12 Acetate

    Full text link
    We used a Josephson junction as a radiation detector to look for evidence of the emission of electromagnetic radiation during magnetization avalanches in a crystal assembly of Mn_12-Acetate. The crystal assembly exhibits avalanches at several magnetic fields in the temperature range from 1.8 to 2.6 K with durations of the order of 1 ms. Although a recent study shows evidence of electromagnetic radiation bursts during these avalanches [J. Tejada, et al., Appl. Phys. Lett. {\bf 84}, 2373 (2004)], we were unable to detect any significant radiation at well-defined frequencies. A control experiment with external radiation pulses allows us to determine that the energy released as radiation during an avalanche is less than 1 part in 10^4 of the total energy released. In addition, our avalanche data indicates that the magnetization reversal process does not occur uniformly throughout the sample.Comment: 4 RevTeX pages, 3 eps figure

    Radiation- and Phonon-Bottleneck-Induced Tunneling in the Fe8 Single-Molecule Magnet

    Full text link
    We measure magnetization changes in a single crystal of the single-molecule magnet Fe8 when exposed to intense, short (<20 ÎĽ\mus) pulses of microwave radiation resonant with the m = 10 to 9 transition. We find that radiation induces a phonon bottleneck in the system with a time scale of ~5 ÎĽ\mus. The phonon bottleneck, in turn, drives the spin dynamics, allowing observation of thermally assisted resonant tunneling between spin states at the 100-ns time scale. Detailed numerical simulations quantitatively reproduce the data and yield a spin-phonon relaxation time of T1 ~ 40 ns.Comment: 6 RevTeX pages, including 4 EPS figures, version accepted for publicatio

    Discrete charge patterns, Coulomb correlations and interactions in protein solutions

    Full text link
    The effective Coulomb interaction between globular proteins is calculated as a function of monovalent salt concentration csc_s, by explicit Molecular Dynamics simulations of pairs of model proteins in the presence of microscopic co and counterions. For discrete charge patterns of monovalent sites on the surface, the resulting osmotic virial coefficient B2B_2 is found to be a strikingly non-monotonic function of csc_s. The non-monotonicity follows from a subtle Coulomb correlation effect which is completely missed by conventional non-linear Poisson-Boltzmann theory and explains various experimental findings.Comment: 4 twocolumn pages with 4 figure

    Time-Dependent Hartree-Fock simulation of the expansion of abraded nuclei

    Full text link
    A recent interpretation of the caloric curve based on the expansion of the abraded spectator nucleus is re-analysed in the framework of the Time-Dependent Hartree-Fock (TDHF) evolution. It is shown that the TDHF dynamics is more complex than a single monopolar collective motion at moderate energy. The inclusion of other important collective degrees of freedom may lead to the dynamical creation of hollow structure. Then, low density regions could be locally reached after a long time by the creation of these exotic density profiles. In particular the systematic of the minimum density reached during the expansion (the so-called turning points) appears to be different.Comment: 30 Latex pages including 9 figure

    Optical properties of the vibrations in charged C60_{60} molecules

    Full text link
    The transition strengths for the four infrared-active vibrations of charged C60_{60} molecules are evaluated in self-consistent density functional theory using the local density approximation. The oscillator strengths for the second and fourth modes are strongly enhanced relative to the neutral C60_{60} molecule, in good agreement with the experimental observation of ``giant resonances'' for those two modes. Previous theory, based on a ``charged phonon'' model, predicted a quadratic dependence of the oscillator strength on doping, but this is not borne out in our calculations.Comment: 10 pages, RevTeX3.

    Nucleon decay in gauge unified models with intersecting D6-branes

    Get PDF
    Baryon number violation is discussed in gauge unified orbifold models of type II string theory with intersecting Dirichlet branes. We consider setups of D6-branes which extend along the flat Minkowski space-time directions and wrap around 3-cycles of the internal 6-d manifold. The discussion is motivated by the enhancement effect of low energy amplitudes anticipated for M-theory and type II string theory models with matter modes localized at points of the internal manifold. The conformal field theory formalism is used to evaluate the open string amplitudes at tree level. We study the single baryon number violating processes of dimension 6 and 5, involving four quarks and leptons and in supersymmetry models, two pairs of matter fermions and superpartner sfermions. The higher order processes associated with the baryon number violating operators of dimension 7 and 9 are also examined, but in a qualitative way. We discuss the low energy representation of string theory amplitudes in terms of infinite series of poles associated to exchange of string Regge resonance and compactification modes. The comparison of string amplitudes with the equivalent field theory amplitudes is first studied in the large compactification radius limit. Proceeding next to the finite compactification radius case, we present a numerical study of the ratio of string to field theory amplitudes based on semi-realistic gauge unified non-supersymmetric and supersymmetric models employing the Z3 and Z2xZ2 orbifolds. We find a moderate enhancement of string amplitudes which becomes manifest in the regime where the gauge symmetry breaking mass parameter exceeds the compactification mass parameter, corresponding to a gauge unification in a seven dimensional space-time.Comment: 63 pages revtex4. 8 postscript figures. 4 tables. Subsection II.B revised. Several new references added. To appear in Physical Review

    Isoperimetric Inequalities in Simplicial Complexes

    Full text link
    In graph theory there are intimate connections between the expansion properties of a graph and the spectrum of its Laplacian. In this paper we define a notion of combinatorial expansion for simplicial complexes of general dimension, and prove that similar connections exist between the combinatorial expansion of a complex, and the spectrum of the high dimensional Laplacian defined by Eckmann. In particular, we present a Cheeger-type inequality, and a high-dimensional Expander Mixing Lemma. As a corollary, using the work of Pach, we obtain a connection between spectral properties of complexes and Gromov's notion of geometric overlap. Using the work of Gunder and Wagner, we give an estimate for the combinatorial expansion and geometric overlap of random Linial-Meshulam complexes

    Nuclear spin driven quantum relaxation in LiY_0.998Ho_0.002F_4

    Full text link
    Staircase hysteresis loops of the magnetization of a LiY_0.998Ho_0.002F_4 single crystal are observed at subkelvin temperatures and low field sweep rates. This behavior results from quantum dynamics at avoided level crossings of the energy spectrum of single Ho^{3+} ions in the presence of hyperfine interactions. Enhanced quantum relaxation in constant transverse fields allows the study of the relative magnitude of tunnel splittings. At faster sweep rates, non-equilibrated spin-phonon and spin-spin transitions, mediated by weak dipolar interactions, lead to magnetization oscillations and additional steps.Comment: 5 pages, 5 eps figures, using RevTe

    Inextendible Schwarzschild black hole with a single exterior: How thermal is the Hawking radiation?

    Full text link
    Several approaches to Hawking radiation on Schwarzschild spacetime rely in some way or another on the fact that the Kruskal manifold has two causally disconnected exterior regions. We investigate the Hawking(-Unruh) effect for a real scalar field on the \RPthree geon: an inextendible, globally hyperbolic, space and time orientable eternal black hole spacetime that is locally isometric to Kruskal but contains only one exterior region. The Hartle-Hawking-like vacuum~\hhvacgeon, which can be characterized alternatively by the positive frequency properties along the horizons or by the complex analytic properties of the Feynman propagator, turns out to contain exterior region Boulware modes in correlated pairs, and any operator in the exterior that only couples to one member of each correlated Boulware pair has thermal expectation values in the usual Hawking temperature. Generic operators in the exterior do not have this special form; however, we use a Bogoliubov transformation, a particle detector analysis, and a particle emission-absorption analysis that invokes the analytic properties of the Feynman propagator, to argue that \hhvacgeon appears as a thermal bath with the standard Hawking temperature to any exterior observer at asymptotically early and late Schwarzschild times. A~(naive) saddle-point estimate for the path-integral-approach partition function yields for the geon only half of the Bekenstein-Hawking entropy of a Schwarzschild black hole with the same ADM mass: possible implications of this result for the validity of path-integral methods or for the statistical interpretation of black-hole entropy are discussed. Analogous results hold for a Rindler observer in a flat spacetime whose global properties mimic those of the geon.Comment: 53 pages, REVTex v3.1 with amsfonts and epsf, includes 5 eps figures. (v2: Title and abstract expanded, minor comments added. v3: Minor typos corrected.
    • …
    corecore