5,083 research outputs found

    Quasi-Chemical and Structural Analysis of Polarizable Anion Hydration

    Full text link
    Quasi-chemical theory is utilized to analyze the roles of solute polarization and size in determining the structure and thermodynamics of bulk anion hydration for the Hofmeister series Cl−^-, Br−^-, and I−^-. Excellent agreement with experiment is obtained for whole salt hydration free energies using the polarizable AMOEBA force field. The quasi-chemical approach exactly partitions the solvation free energy into inner-shell, outer-shell packing, and outer-shell long-ranged contributions by means of a hard-sphere condition. Small conditioning radii, even well inside the first maximum of the ion-water(oxygen) radial distribution function, result in Gaussian behavior for the long-ranged contribution that dominates the ion hydration free energy. The spatial partitioning allows for a mean-field treatment of the long-ranged contribution, leading to a natural division into first-order electrostatic, induction, and van der Waals terms. The induction piece exhibits the strongest ion polarizability dependence, while the larger-magnitude first-order electrostatic piece yields an opposing but weaker polarizability dependence. In addition, a structural analysis is performed to examine the solvation anisotropy around the anions. As opposed to the hydration free energies, the solvation anisotropy depends more on ion polarizability than on ion size: increased polarizability leads to increased anisotropy. The water dipole moments near the ion are similar in magnitude to bulk water, while the ion dipole moments are found to be significantly larger than those observed in quantum mechanical studies. Possible impacts of the observed over-polarization of the ions on simulated anion surface segregation are discussed.Comment: slight revision, in press at J. Chem. Phy

    A role for a small stable RNA in modulating the activity of DNA-binding proteins

    Get PDF
    AbstractThe 10Sa RNA, encoded by the E. coli ssrA gene, appears to modulate action of some DNA-binding proteins. When ssrA is inactivated, lacZ expression from the lac operon, as well as galK from a gal operon fused to a phage λ promoter, is reduced from that observed in bacteria wild-type for ssrA. These differences are not observed if the relevant repressor is inactive, suggesting that in the absence of 10Sa RNA binding of Lacl and λ cl repressors is enhanced. Gel mobility shifts show that 10Sa RNA binds these repressors and that an excess of 10Sa RNA competes for binding of λ cl with a DNA fragment containing the OR2 repressor-binding sequence. Similar observations were made in studies of the E. coil LexA repressor and phage P22 C1 transcription activator proteins. These results suggest that direct interaction with 10Sa RNA may explain this modulation of protein-DNA interactions

    Polyethylene Glycol Camouflaged Earthworm Hemoglobin.

    Get PDF
    Nearly 21 million components of blood and whole blood and transfused annually in the United States, while on average only 13.6 million units of blood are donated. As the demand for Red Blood Cells (RBCs) continues to increase due to the aging population, this deficit will be more significant. Despite decades of research to develop hemoglobin (Hb) based oxygen (O2) carriers (HBOCs) as RBC substitutes, there are no products approved for clinical use. Lumbricus terrestris erythrocruorin (LtEc) is the large acellular O2 carrying protein complex found in the earthworm Lumbricus terrestris. LtEc is an extremely stable protein complex, resistant to autoxidation, and capable of transporting O2 to tissue when transfused into mammals. These characteristics render LtEc a promising candidate for the development of the next generation HBOCs. LtEc has a short half-life in circulation, limiting its application as a bridge over days, until blood became available. Conjugation with polyethylene glycol (PEG-LtEc) can extend LtEc circulation time. This study explores PEG-LtEc pharmacokinetics and pharmacodynamics. To study PEG-LtEc pharmacokinetics, hamsters instrumented with the dorsal window chamber were subjected to a 40% exchange transfusion with 10 g/dL PEG-LtEc or LtEc and followed for 48 hours. To study the vascular response of PEG-LtEc, hamsters instrumented with the dorsal window chamber received multiple infusions of 10 g/dL PEG-LtEc or LtEc solution to increase plasma LtEc concentration to 0.5, then 1.0, and 1.5 g/dL, while monitoring the animals' systemic and microcirculatory parameters. Results confirm that PEGylation of LtEc increases its circulation time, extending the half-life to 70 hours, 4 times longer than that of unPEGylated LtEc. However, PEGylation increased the rate of LtEc oxidation in vivo. Vascular analysis verified that PEG-LtEc showed the absence of microvascular vasoconstriction or systemic hypertension. The molecular size of PEG-LtEc did not change the colloid osmotic pressure or blood volume expansion capacity compared to LtEc, due to LtEc's already large molecular size. Taken together, these results further encourage the development of PEG-LtEc as an O2 carrying therapeutic

    Singularities of Nonlinear Elliptic Systems

    Full text link
    Through Morrey's spaces (plus Zorko's spaces) and their potentials/capacities as well as Hausdorff contents/dimensions, this paper estimates the singular sets of nonlinear elliptic systems of the even-ordered Meyers-Elcrat type and a class of quadratic functionals inducing harmonic maps.Comment: 18 pages Communications in Partial Differential Equation

    Simple Quantum Systems in Spacetimes with Closed Timelike Curves

    Get PDF
    Three simple examples illustrate properties of path integral amplitudes in fixed background spacetimes with closed timelike curves: non-relativistic potential scattering in the Born approximation is non-unitary, but both an example with hard spheres and the exact solution of a totally discrete model are unitary.Comment: 15 pages, CALT-68-180
    • …
    corecore