7 research outputs found

    A fast radiotherapy paradigm for anal cancer with volumetric modulated arc therapy (VMAT)

    Get PDF
    Background/Purpose: Radiotherapy (RT) volumes for anal cancer are large and of moderate complexity when organs at risk ( OAR) such as testis, small bowel and bladder are at least partially to be shielded. Volumetric intensity modulated arc therapy (VMAT) might provide OAR-shielding comparable to step-and-shoot intensity modulated radiotherapy (IMRT) for this tumor entity with better treatment efficiency. Materials and methods: Based on treatment planning CTs of 8 patients, we compared dose distributions, comformality index (CI), homogeneity index ( HI), number of monitor units (MU) and treatment time (TTT) for plans generated for VMAT, 3D-CRT and step-and-shoot-IMRT (optimized based on Pencil Beam (PB) or Monte Carlo ( MC) dose calculation) for typical anal cancer planning target volumes (PTV) including inguinal lymph nodes as usually treated during the first phase (0-36 Gy) of a shrinking field regimen. Results: With values of 1.33 +/- 0.21/1.26 +/- 0.05/1.3 +/- 0.02 and 1.39 +/- 0.09, the CI's for IMRT (PB-Corvus/PB-Hyperion/MC-Hyperion) and VMAT are better than for 3D-CRT with 2.00 +/- 0.16. The HI's for the prescribed dose (HI36) for 3D-CRT were 1.06 +/- 0.01 and 1.11 +/- 0.02 for VMAT, respectively and 1.15 +/- 0.02/1.10 +/- 0.02/1.11 +/- 0.08 for IMRT (PB-Corvus/PB-Hyperion/MCHyperion). Mean TTT and MU's for 3D-CRT is 220s/225 +/- 11MU and for IMRT (PB-Corvus/PBHyperion/MC-Hyperion) is 575s/1260 +/- 172MU, 570s/477 +/- 84MU and 610s748 +/- 193MU while TTT and MU for two-arc-VMAT is 290s/268 +/- 19MU. Conclusion: VMAT provides treatment plans with high conformity and homogeneity equivalent to step-and-shoot-IMRT for this mono-concave treatment volume. Short treatment delivery time and low primary MU are the most important advantages

    On the performances of different IMRT treatment planning systems for selected paediatric cases

    Get PDF
    BACKGROUND: To evaluate the performance of seven different TPS (Treatment Planning Systems: Corvus, Eclipse, Hyperion, KonRad, Oncentra Masterplan, Pinnacle and PrecisePLAN) when intensity modulated (IMRT) plans are designed for paediatric tumours. METHODS: Datasets (CT images and volumes of interest) of four patients were used to design IMRT plans. The tumour types were: one extraosseous, intrathoracic Ewing Sarcoma; one mediastinal Rhabdomyosarcoma; one metastatic Rhabdomyosarcoma of the anus; one Wilm's tumour of the left kidney with multiple liver metastases. Prescribed doses ranged from 18 to 54.4 Gy. To minimise variability, the same beam geometry and clinical goals were imposed on all systems for every patient. Results were analysed in terms of dose distributions and dose volume histograms. RESULTS: For all patients, IMRT plans lead to acceptable treatments in terms of conformal avoidance since most of the dose objectives for Organs At Risk (OARs) were met, and the Conformity Index (averaged over all TPS and patients) ranged from 1.14 to 1.58 on primary target volumes and from 1.07 to 1.37 on boost volumes. The healthy tissue involvement was measured in terms of several parameters, and the average mean dose ranged from 4.6 to 13.7 Gy. A global scoring method was developed to evaluate plans according to their degree of success in meeting dose objectives (lower scores are better than higher ones). For OARs the range of scores was between 0.75 ± 0.15 (Eclipse) to 0.92 ± 0.18 (Pinnacle(3 )with physical optimisation). For target volumes, the score ranged from 0.05 ± 0.05 (Pinnacle(3 )with physical optimisation) to 0.16 ± 0.07 (Corvus). CONCLUSION: A set of complex paediatric cases presented a variety of individual treatment planning challenges. Despite the large spread of results, inverse planning systems offer promising results for IMRT delivery, hence widening the treatment strategies for this very sensitive class of patients

    radiation

    No full text
    Determination of depth and field size dependence of multileaf collimator transmission in intensity-modulate
    corecore