2,301 research outputs found

    Pioneer Mars 1979 mission options

    Get PDF
    A preliminary investigation of lower cost Mars missions which perform useful exploration objectives after the Viking/75 mission was conducted. As a study guideline, it was assumed that significant cost savings would be realized by utilizing Pioneer hardware currently being developed for a pair of 1978 Venus missions. This in turn led to the additional constraint of a 1979 launch with the Atlas/Centaur launch vehicle which has been designated for the Pioneer Venus missions. Two concepts, using an orbiter bus platform, were identified which have both good science potential and mission simplicity indicative of lower cost. These are: (1) an aeronomy/geology orbiter, and (2) a remote sensing orbiter with a number of deployable surface penetrometers

    Sky survey at far infrared wavelengths using a balloon-borne telescope

    Get PDF
    Localized sources of far infrared radiation (approximately 50 microns) have been detected during a high altitude balloon flight with a 40 cm telescope and silicon detectors. The flight system is described and preliminary results are presented. A large area of the sky has been scanned for localized sources of far infrared radiation, using a balloon-borne system that was sensitive to wavelengths beyond about 55 microns. Two Molectron silicon bolometers were used, with a Newtonian telescope having a 40 cm primary. The telescope was driven in azimuth at a fixed elevation; this mode of scanning was carried out for the duration of each of two balloon flights. The flight system is described

    Multipole structure of current vectors in curved spacetime

    Get PDF
    A method is presented which allows the exact construction of conserved (i.e. divergence-free) current vectors from appropriate sets of multipole moments. Physically, such objects may be taken to represent the flux of particles or electric charge inside some classical extended body. Several applications are discussed. In particular, it is shown how to easily write down the class of all smooth and spatially-bounded currents with a given total charge. This implicitly provides restrictions on the moments arising from the smoothness of physically reasonable vector fields. We also show that requiring all of the moments to be constant in an appropriate sense is often impossible; likely limiting the applicability of the Ehlers-Rudolph-Dixon notion of quasirigid motion. A simple condition is also derived that allows currents to exist in two different spacetimes with identical sets of multipole moments (in a natural sense).Comment: 13 pages, minor changes, accepted to J. Math. Phy

    The origin and propagation of VVH primary cosmic ray particles

    Get PDF
    Several source spectra were constructed from combinations of 4- and s-process nuclei to match the observed charge spectrum of VVH particles. Their propagation was then followed, allowing for interactions and decay, and comparisons were made between the calculated near-earth spectra and those observed during high altitude balloon flights. None of the models gave good agreement with observations

    Nova Dust Nucleation: Kinetics and Photodissociation

    Full text link
    Dust is observed to form in nova ejecta. The grain temperature is determined by the diluted nova radiation field rather than the gas kinetic temperature, making classical nucleation theory inapplicable. We used kinetic equations to calculate the growth of carbon nuclei in these ejecta. For expected values of the parameters too many clusters grew, despite the small sticking probability of atoms to small clusters, and the clusters only reached radii of about 100\AA\ when the carbon vapor was depleted. We then included the effects of cluster photodissociation by ultraviolet radiation from the nova. This suppresses nucleation, but too well, and no grains form at all. Finally we suggest that a few growing carbon nuclei may be protected from photodissociation by a sacrificial surface layer of hydrogen.Comment: 29 page

    Primary cosmic ray particles with z 35 (VVH particles)

    Get PDF
    Large areas of nuclear emulsions and plastic detectors were exposed to the primary cosmic radiation during high altitude balloon flights. From the analysis of 141 particle tracks recorded during a total exposure of 1.3 x 10 to the 7th power sq m ster.sec., a charge spectrum of the VVH particles has been derived

    Algebraic approach to quantum field theory on non-globally-hyperbolic spacetimes

    Get PDF
    The mathematical formalism for linear quantum field theory on curved spacetime depends in an essential way on the assumption of global hyperbolicity. Physically, what lie at the foundation of any formalism for quantization in curved spacetime are the canonical commutation relations, imposed on the field operators evaluated at a global Cauchy surface. In the algebraic formulation of linear quantum field theory, the canonical commutation relations are restated in terms of a well-defined symplectic structure on the space of smooth solutions, and the local field algebra is constructed as the Weyl algebra associated to this symplectic vector space. When spacetime is not globally hyperbolic, e.g. when it contains naked singularities or closed timelike curves, a global Cauchy surface does not exist, and there is no obvious way to formulate the canonical commutation relations, hence no obvious way to construct the field algebra. In a paper submitted elsewhere, we report on a generalization of the algebraic framework for quantum field theory to arbitrary topological spaces which do not necessarily have a spacetime metric defined on them at the outset. Taking this generalization as a starting point, in this paper we give a prescription for constructing the field algebra of a (massless or massive) Klein-Gordon field on an arbitrary background spacetime. When spacetime is globally hyperbolic, the theory defined by our construction coincides with the ordinary Klein-Gordon field theory on aComment: 21 pages, UCSBTH-92-4

    Quasi-local contribution to the scalar self-force: Non-geodesic Motion

    Full text link
    We extend our previous calculation of the quasi-local contribution to the self-force on a scalar particle to general (not necessarily geodesic) motion in a general spacetime. In addition to the general case and the case of a particle at rest in a stationary spacetime, we consider as examples a particle held at rest in Reissner-Nordstrom and Kerr-Newman space-times. This allows us to most easily analyse the effect of non-geodesic motion on our previous results and also allows for comparison to existing results for Schwarzschild spacetime.Comment: 11 pages, 1 figure, corrected typo in Eq. 2.
    • …
    corecore