20 research outputs found

    Projected sea surface temperatures over the 21st century: Changes in the mean, variability and extremes for large marine ecosystem regions of Northern Oceans

    Get PDF
    Global climate models were used to assess changes in the mean, variability and extreme sea surface temperatures (SSTs) in northern oceans with a focus on large marine ecosystems (LMEs) adjacent to North America, Europe, and the Arctic Ocean. Results were obtained from 26 models in the Community Model Intercomparison Project Phase 5 (CMIP5) archive and 30 simulations from the National Center for Atmospheric Research Large Ensemble Community Project (CESM-LENS). All of the simulations used the observed greenhouse gas concentrations for 1976–2005 and the RCP8.5 “business as usual” scenario for greenhouse gases through the remainder of the 21st century. In general, differences between models are substantially larger than among the simulations in the CESM-LENS, indicating that the SST changes are more strongly affected by model formulation than internal climate variability. The annual SST trends over 1976–2099 in the 18 LMEs examined here are all positive ranging from 0.05 to 0.5°C decade–1. SST changes by the end of the 21st century are primarily due to a positive shift in the mean with only modest changes in the variability in most LMEs, resulting in a substantial increase in warm extremes and decrease in cold extremes. The shift in the mean is so large that in many regions SSTs during 2070–2099 will always be warmer than the warmest year during 1976–2005. The SST trends are generally stronger in summer than in winter, as greenhouse gas heating is integrated over a much shallower climatological mixed layer depth in summer than in winter, which amplifies the seasonal cycle of SST over the 21st century. In the Arctic, the mean SST and its variability increases substantially during summer, when it is ice free, but not during winter when a thin layer of ice reforms and SSTs remain near the freezing point

    Seasonal trends and phenology shifts in sea surface temperature on the North American northeastern continental shelf

    Get PDF
    The northeastern North American continental shelf from Cape Hatteras to the Scotian Shelf is a region of globally extreme positive trends in sea surface temperature (SST). Here, a 33-year (1982–2014) time series of daily satellite SST data was used to quantify and map spatial patterns in SST trends and phenology over this shelf. Strongest trends are over the Scotian Shelf (>0.6°C decade –1 ) and Gulf of Maine (>0.4°C decade –1 ) with weaker trends over the inner Mid-Atlantic Bight (~0.3°C decade –1 ). Winter (January–April) trends are relatively weak, and even negative in some areas; early summer (May–June) trends are positive everywhere, and later summer (July–September) trends are strongest (~1.0°C decade –1 ). These seasonal differences shift the phenology of many metrics of the SST cycle. The yearday on which specific temperature thresholds (8° and 12°C) are reached in spring trends earlier, most strongly over the Scotian Shelf and Gulf of Maine (~ –0.5 days year –1 ). Three metrics defining the warmest summer period show significant trends towards earlier summer starts, later summer ends and longer summer duration over the entire study region. Trends in start and end dates are strongest (~1 day year –1 ) over the Gulf of Maine and Scotian Shelf. Trends in increased summer duration are >2.0 days year –1 in parts of the Gulf of Maine. Regression analyses show that phenology trends have regionally varying links to the North Atlantic Oscillation, to local spring and summer atmospheric pressure and air temperature and to Gulf Stream position. For effective monitoring and management of dynamically heterogeneous shelf regions, the results highlight the need to quantify spatial and seasonal differences in SST trends as well as trends in SST phenology, each of which likely has implications for the ecological functioning of the shelf

    Seasonal phytoplankton blooms in the North Atlantic linked to the overwintering strategies of copepods

    Get PDF
    The North Atlantic Ocean contains diverse patterns of seasonal phytoplankton blooms with distinct internal dynamics. We analyzed blooms using remotely-sensed chlorophyll a concentration data and change point statistics. The first bloom of the year began during spring at low latitudes and later in summer at higher latitudes. In regions where spring blooms occurred at high frequency (i.e., proportion of years that a bloom was detected), there was a negative correlation between bloom timing and duration, indicating that early blooms last longer. In much of the Northeast Atlantic, bloom development extended over multiple seasons resulting in peak chlorophyll concentrations in summer. Spring bloom start day was found to be positively correlated with a spring phenology index and showed both positive and negative correlations to sea surface temperature and the North Atlantic Oscillation in different regions. Based on the characteristics of spring and summer blooms, the North Atlantic can be classified into two regions: a seasonal bloom region, with a well-defined bloom limited to a single season; and a multi-seasonal bloom region, with blooms extending over multiple seasons. These regions differed in the correlation between bloom start and duration with only the seasonal bloom region showing a significant, negative correlation. We tested the hypothesis that the nearsurface springtime distribution of copepods that undergo diapause (Calanus finmarchicus, C. helgolandicus, C. glacialis, and C. hyperboreus) may contribute to the contrast in bloom development between the two regions. Peak near-surface spring abundance of the late stages of these Calanoid copepods was generally associated with areas having a well-defined seasonal bloom, implying a link between bloom shape and their abundance. We suggest that either grazing is a factor in shaping the seasonal bloom or bloom shape determines whether a habitat is conducive to diapause, while recognizing that both factors can re-enforce each other

    Non-AIDS defining cancers in the D:A:D Study-time trends and predictors of survival : a cohort study

    Get PDF
    BACKGROUND:Non-AIDS defining cancers (NADC) are an important cause of morbidity and mortality in HIV-positive individuals. Using data from a large international cohort of HIV-positive individuals, we described the incidence of NADC from 2004-2010, and described subsequent mortality and predictors of these.METHODS:Individuals were followed from 1st January 2004/enrolment in study, until the earliest of a new NADC, 1st February 2010, death or six months after the patient's last visit. Incidence rates were estimated for each year of follow-up, overall and stratified by gender, age and mode of HIV acquisition. Cumulative risk of mortality following NADC diagnosis was summarised using Kaplan-Meier methods, with follow-up for these analyses from the date of NADC diagnosis until the patient's death, 1st February 2010 or 6 months after the patient's last visit. Factors associated with mortality following NADC diagnosis were identified using multivariable Cox proportional hazards regression.RESULTS:Over 176,775 person-years (PY), 880 (2.1%) patients developed a new NADC (incidence: 4.98/1000PY [95% confidence interval 4.65, 5.31]). Over a third of these patients (327, 37.2%) had died by 1st February 2010. Time trends for lung cancer, anal cancer and Hodgkin's lymphoma were broadly consistent. Kaplan-Meier cumulative mortality estimates at 1, 3 and 5 years after NADC diagnosis were 28.2% [95% CI 25.1-31.2], 42.0% [38.2-45.8] and 47.3% [42.4-52.2], respectively. Significant predictors of poorer survival after diagnosis of NADC were lung cancer (compared to other cancer types), male gender, non-white ethnicity, and smoking status. Later year of diagnosis and higher CD4 count at NADC diagnosis were associated with improved survival. The incidence of NADC remained stable over the period 2004-2010 in this large observational cohort.CONCLUSIONS:The prognosis after diagnosis of NADC, in particular lung cancer and disseminated cancer, is poor but has improved somewhat over time. Modifiable risk factors, such as smoking and low CD4 counts, were associated with mortality following a diagnosis of NADC

    Oceanic changes in the Sargasso Sea and declines in recruitment of the European eel

    No full text
    Anguillid eel recruitment in the North Atlantic has declined in recent decades, raising concerns that climatic changes in the Sargasso Sea may be influencing oceanic reproduction and larval survival. There is a significant negative correlation between the North Atlantic Oscillation and long-term variations in catches of glass eel stages of the European eel Anguilla anguilla recorded by the fishery inde-pendent Den Oever recruitment index (DOI) in the Netherlands, lagged by one year. Ocean-atmospheric changes in the Sargasso Sea may affect the location of spawning areas by silver eels and the survival of leptocephali during the key period when they are trans-ported towards the Gulf Stream. A northward shift in a key isotherm (22.58C), defining the northern boundary of the spawning area, a declining trend in winds and transport conditions in larval transport areas, and a shallowing of the mixed layer depth could affect primary productivity in areas where leptocephali feed. The relationships between these ocean parameters and the DOI suggest that these changing ocean conditions could be contributing to declining recruitment of the European eel and probably also of the American eel (A. rostrata), but anthropogenic factors during their continental life stage must also be considered

    Nutrient enrichment and fisheries exploitation: interactive effects on estuarine living resources and their management

    No full text
    Both fisheries exploitation and increased nutrient loadings strongly affect fish and shellfish abundance and production in estuaries. These stressors do not act independently; instead, they jointly influence food webs, and each affects the sensitivity of species and ecosystems to the other. Nutrient enrichment and the habitat degradation it sometimes causes can affect sustainable yields of fisheries, and fisheries exploitation can affect the ability of estuarine systems to process nutrients. The total biomass of fisheries landings in estuaries and semi-enclosed seas tends to increase with nitrogen loadings in spite of hypoxia, but hypoxia and other negative effects of nutrient over-enrichment cause declines in individual species and in parts of systems most severely affected. More thoroughly integrated management of nutrients and fisheries will permit more effective management responses to systems affected by both stressors, including the application of fisheries regulations to rebuild stocks negatively affected by eutrophication. Reducing fishing mortality may lead to the recovery of depressed populations even when eutrophication contributes to population declines if actions are taken while the population retains sufficient reproductive potential. New advances in modeling, statistics, and technology promise to provide the information needed to improve the understanding and management of systems subject to both nutrient enrichment and fisheries exploitation
    corecore