68 research outputs found

    Evaluation of air pollution-related risks for Austrian mountain forests

    No full text
    reduction of emissions in Europe, pollutants are still a potential stress factor, especially for sensitive mountain forest ecosystems in Austria. Abstract The present paper describes air pollution status and evaluation of risks related to effects of phytotoxic pollutants in the Austrian mountain forests. The results are based on Austrian networks (Forest Inventory, Forest Damage Monitoring System, Austrian Bioindicator Grid), the Austrian sample plots of the European networks of the UN-ECE (ICP Forests, Level I and Level II) and interdisciplinary research approaches. Based on the monitoring data and on modelling and mapping of Critical Thresholds, the evaluation of risk factors was possible. Cause-effect relationships between air pollution and tree responses were shown by treephysiological measurements. Sulfur impact, proton and lead input, concentrations of nitrogen oxides, nitrogen input and ozone were evaluated. The risk was demonstrated at a regional and large-scale national level. Especially the increasing O 3 level and the accumulation of Pb with altitude present most serious risk for mountain forests.

    Announcement of a special issue in ESPR

    No full text

    Announcement of a Special Issue in ESPR

    No full text

    Modeling of Nitrogen Dynamics in an Austrian Alpine Forest Ecosystem on Calcareous Soils: A Scenario-Based Risk Assessment under Changing Environmental Conditions

    No full text
    We modeled the behavior of an Austrian alpine forest ecosystem on calcareous soils under changing climate and atmospheric nitrogen deposition scenarios. The change of nitrate leaching, emission rates of nitrogen compounds, and forest productivity were calculated using four process-oriented models for the periods 1998–2002 and 2048–2052. Each model reflects with high detail a segment of the ecosystem: PnET-N-DNDC (photosynthesis-evapotranspiration-nitrification-denitrification-decomposition; shortterm nitrogen cycling), BROOK90 (water balance for small and homogenous forest watersheds), HYDRUS (water flux in complex and heterogenous soils), and PICUS v1.3 (forest productivity). The nitrogen balance model (NBM) combines the individual results into a comprehensive picture and extends the specific values beyond the limits of the individual models. The evaluation of the findings was outlined with TRACE, a model enabling a long-term prognosis of nitrogen cycling in annual time steps

    In Situ Measurements of Carbon Dioxide, 0.37-4.0 µm Particles, and Water Vapor in the Stratospheric Plumes of Small Rockets

    No full text
    Carbon dioxide (CO2) and large particles (0.37-4.0 μm) were measured in the stratospheric plume wakes of three rockets, an Atlas IIAS, a Delta II, and an Athena II. The correlations between CO2 mass and particle number densities in each plume are consistent with the unique combination of solid and liquid engine emissions of each rocket. Measured size distributions indicate a 1.1 μm mode with density of 2 g cm-3, consistent with spherical alumina particles emitted by solid rocket motors. Disagreement between the measured size distributions and the mean sizes inferred from the known alumina and CO2 emission indices and an observed increase in the particle number emission index with altitude are evidence for large particle oversampling effects and the presence of condensed volatile compounds within the particle population. Direct evidence for the latter is a persistent ~0.5-1 part per million (ppm) shortfall of water vapor relative to CO2 measured in the plume of the Athena II rocket based on the expected H2O/CO2 emission ratio. Although pure ice particles would not persist at the conditions of the measurements, a more stable coating of HNO3 (as either nitric acid trihydrate or as a liquid layer) could have reduced the sublimation rate of the underlying ice, thereby increasing the lifetimes of volatile particles within the plume. If confirmed, such a process would have important implications for the radiative and chemical properties of rocket plumes, including global ozone depletion associated with rocket launch activities
    • …
    corecore