1,673 research outputs found
Optical propagation measurements at Emerson Lake, 1968
Optical propagation measurements in inhomogeneous atmosphere at Emerson Lake, California for optical propagation theory validity testin
Restitution for Haiti, Reparations for All: Haiti’s Place in the Global Reparations Movement
Haiti’s claim for restitution of the debt coerced by France in exchange for Haiti’s 1804 independence has unique legal advantages that can open the door to broader reparations for the descendants of all people harmed by slavery. But in order to assert the claim, Haiti first needs help reclaiming its democracy from a corrupt, repressive regime propped up by the powerful countries that prospered through slavery and overthrew the Haitian President who dared to assert his country’s legal claim. This article explores Haiti’s Independence Debt, and the fight for restitution of it, in the context of two centuries of continued struggle between Haitians asserting their independence and countries enriched by slavery trying to limit the power of Haiti’s example
An Analysis of Fundamental Waffle Mode in Early AEOS Adaptive Optics Images
Adaptive optics (AO) systems have significantly improved astronomical imaging
capabilities over the last decade, and are revolutionizing the kinds of science
possible with 4-5m class ground-based telescopes. A thorough understanding of
AO system performance at the telescope can enable new frontiers of science as
observations push AO systems to their performance limits. We look at recent
advances with wave front reconstruction (WFR) on the Advanced Electro-Optical
System (AEOS) 3.6 m telescope to show how progress made in improving WFR can be
measured directly in improved science images. We describe how a "waffle mode"
wave front error (which is not sensed by a Fried geometry Shack-Hartmann wave
front sensor) affects the AO point-spread function (PSF). We model details of
AEOS AO to simulate a PSF which matches the actual AO PSF in the I-band, and
show that while the older observed AEOS PSF contained several times more waffle
error than expected, improved WFR techniques noticeably improve AEOS AO
performance. We estimate the impact of these improved WFRs on H-band imaging at
AEOS, chosen based on the optimization of the Lyot Project near-infrared
coronagraph at this bandpass.Comment: 15 pages, 11 figures, 1 table; to appear in PASP, August 200
Hydroxymethylated Resorcinol Coupling Agent for Enhanced Durability of Bisphenol-A Epoxy Bonds to Sitka Spruce
Epoxy adhesives can develop bonds to wood that are as strong as the wood itself, but only if the bonds remain dry. Once exposed to repeated water soaking and severe stresses from drying, epoxy bonds delaminate and fail to meet requirements for structural wood adhesives intended for exterior exposure. A new hydroxymethylated resorcinol (HMR) coupling agent, applied to lumber surfaces before bonding, chemically couples both epoxy adhesive and lignocellulosics of wood to produce bonds to Sitka spruce that are extraordinarily resistant to delamination. In this report, we explain and demonstrate the nature of this coupling agent and the mechanism by which it enhances the durability of bonds of a bisphenol-A epoxy adhesive to wood. When diluted with benzyl alcohol, an epoxy adhesive developed structural bonds in HMR-primed lumber laminates that met the 5% maximum delamination requirement of ASTM Specification D 2559. The USDA Forest Service has applied for a patent for this invention
A Tribute to Justice Byron R. White
Of 107 Justices in 205 years, only twelve have served longer than thirty years, and every long-serving Justice has made a substantial contribution to the institution - offering a steady and dedicated response to the judicial challenges of an era, asserting leadership at a time of national crisis, or articulating a large constitutional vision. The personal qualities and life experiences that a new Justice brings to the Court contain the seeds of the individual\u27s judicial service. Justice White, a skeptical but unflinching democrat, was no exception
A Novel Unsupervised Method to Identify Genes Important in the Anti-viral Response: Application to Interferon/Ribavirin in Hepatitis C Patients
Background: Treating hepatitis C with interferon/ribavirin results in a varied response in terms of decrease in viral titer and ultimate outcome. Marked responders have a sharp decline in viral titer within a few days of treatment initiation, whereas in other patients there is no effect on the virus (poor responders). Previous studies have shown that combination therapy modifies expression of hundreds of genes in vitro and in vivo. However, identifying which, if any, of these genes have a role in viral clearance remains challenging. Aims: The goal of this paper is to link viral levels with gene expression and thereby identify genes that may be responsible for early decrease in viral titer. Methods: Microarrays were performed on RNA isolated from PBMC of patients undergoing interferon/ribavirin therapy. Samples were collected at pre-treatment (day 0), and 1, 2, 7, 14 and 28 days after initiating treatment. A novel method was applied to identify genes that are linked to a decrease in viral titer during interferon/ribavirin treatment. The method uses the relationship between inter-patient gene expression based proximities and inter-patient viral titer based proximities to define the association between microarray gene expression measurements of each gene and viral-titer measurements. Results: We detected 36 unique genes whose expressions provide a clustering of patients that resembles viral titer based clustering of patients. These genes include IRF7, MX1, OASL and OAS2, viperin and many ISG's of unknown function. Conclusion: The genes identified by this method appear to play a major role in the reduction of hepatitis C virus during the early phase of treatment. The method has broad utility and can be used to analyze response to any group of factors influencing biological outcome such as antiviral drugs or anti-cancer agents where microarray data are available. © 2007 Brodsky et al
Microwave Electronics
Contains reports on six research projects.Lincoln Laboratory (Purchase Order DDL-B187)United States Department of the ArmyUnited States Department of the NavyUnited States Department of the Air Force (Contract AF19(122)-458)Office of Naval Research (Contract Nonr 1841(05
A number-conserving linear response study of low-velocity ion stopping in a collisional magnetized classical plasma
The results of a theoretical investigation on the low-velocity stopping power
of the ions moving in a magnetized collisional plasma are presented. The
stopping power for an ion is calculated employing linear response theory using
the dielectric function approach. The collisions, which leads to a damping of
the excitations in the plasma, is taken into account through a
number-conserving relaxation time approximation in the linear response
function. In order to highlight the effects of collisions and magnetic field we
present a comparison of our analytical and numerical results obtained for a
nonzero damping or magnetic field with those for a vanishing damping or
magnetic field. It is shown that the collisions remove the anomalous friction
obtained previously [Nersisyan et al., Phys. Rev. E 61, 7022 (2000)] for the
collisionless magnetized plasmas at low ion velocities. One of major objectives
of this study is to compare and contrast our theoretical results with those
obtained through a novel diffusion formulation based on Dufty-Berkovsky
relation evaluated in magnetized one-component plasma models framed on target
ions and electrons.Comment: Submitted to Phys. Rev. E, 17 pages, 4 figure
- …