73 research outputs found
First-principles molecular-dynamics simulations of a hydrous silica melt: Structural properties and hydrogen diffusion mechanism
We use {\it ab initio} molecular dynamics simulations to study a sample of
liquid silica containing 3.84 wt.% HO.We find that, for temperatures of
3000 K and 3500 K,water is almost exclusively dissolved as hydroxyl groups, the
silica network is partially broken and static and dynamical properties of the
silica network change considerably upon the addition of water.Water molecules
or free O-H groups occur only at the highest temperature but are not stable and
disintegrate rapidly.Structural properties of this system are compared to those
of pure silica and sodium tetrasilicate melts at equivalent temperatures. These
comparisons confirm the picture of a partially broken tetrahedral network in
the hydrous liquid and suggest that the structure of the matrix is as much
changed by the addition of water than it is by the addition of the same amount
(in mole %) of sodium oxide. On larger length scales, correlations are
qualitatively similar but seem to be more pronounced in the hydrous silica
liquid. Finally, we study the diffusion mechanisms of the hydrogen atoms in the
melt. It turns out that HOSi triclusters and SiO dangling bonds play a
decisive role as intermediate states for the hydrogen diffusion.Comment: 25 pages, 18 figures. submitte
Simultaneous Surface Plasmon Resonance and X-ray Absorption Spectroscopy
We present here an experimental set-up to perform simultaneously measurements
of surface plasmon resonance (SPR) and X-ray absorption spectroscopy (XAS) in a
synchrotron beamline. The system allows measuring in situ and in real time the
effect of X-ray irradiation on the SPR curves to explore the interaction of
X-rays with matter. It is also possible to record XAS spectra while exciting
SPR in order to detect the changes in the electronic configuration of thin
films induced by the excitation of surface plasmons. Combined experiments
recording simultaneously SPR and XAS curves while scanning different parameters
can be carried out. The relative variations in the SPR and XAS spectra that can
be detected with this set-up ranges from 10-3 to 10-5, depending on the
particular experiment
Working group written presentation: Trapped radiation effects
The results of the Trapped Radiation Effects Panel for the Space Environmental Effects on Materials Workshop are presented. The needs of the space community for new data regarding effects of the space environment on materials, including electronics are listed. A series of questions asked of each of the panels at the workshop are addressed. Areas of research which should be pursued to satisfy the requirements for better knowledge of the environment and better understanding of the effects of the energetic charged particle environment on new materials and advanced electronics technology are suggested
X-ray irradiation of soda-lime glasses studied in situ with surface plasmon resonance spectroscopy
We present here a study of hard X-ray irradiation of soda-lime glasses performed in situ and in real time. For this purpose, we have used a Au thin film grown on glass and studied the excitation of its surface plasmon resonance (SPR) while irradiating the sample with X-rays, using a recently developed experimental setup at a synchrotron beamline [Serrano et al., Rev. Sci. Instrum. 83, 083101 (2012)]. The extreme sensitivity of the SPR to the features of the glass substrate allows probing the modifications caused by the X-rays. Irradiation induces color centers in the soda-lime glass, modifying its refractive index. Comparison of the experimental results with simulated data shows that both, the real and the imaginary parts of the refractive index of soda-lime glasses, change upon irradiation in time intervals of a few minutes. After X- ray irradiation, the effects are partially reversible. The defects responsible for these modifications are identified as non-bridging oxygen hole centers, which fade by recombination with electrons after irradiation. The kinetics of the defect formation and fading process are also studied in real time
Irradiation-induced Ag nanocluster nucleation in silicate glasses: analogy with photography
The synthesis of Ag nanoclusters in sodalime silicate glasses and silica was
studied by optical absorption (OA) and electron spin resonance (ESR)
experiments under both low (gamma-ray) and high (MeV ion) deposited energy
density irradiation conditions. Both types of irradiation create electrons and
holes whose density and thermal evolution - notably via their interaction with
defects - are shown to determine the clustering and growth rates of Ag
nanocrystals. We thus establish the influence of redox interactions of defects
and silver (poly)ions. The mechanisms are similar to the latent image formation
in photography: irradiation-induced photoelectrons are trapped within the glass
matrix, notably on dissolved noble metal ions and defects, which are thus
neutralized (reverse oxidation reactions are also shown to exist). Annealing
promotes metal atom diffusion, which in turn leads to cluster nuclei formation.
The cluster density depends not only on the irradiation fluence, but also - and
primarily - on the density of deposited energy and the redox properties of the
glass. Ion irradiation (i.e., large deposited energy density) is far more
effective in cluster formation, despite its lower neutralization efficiency
(from Ag+ to Ag0) as compared to gamma photon irradiation.Comment: 48 pages, 18 figures, revised version publ. in Phys. Rev. B, pdf fil
Luminescence spectra of germanosilicate optical fibres I - radioluminescence and cathodoluminescence
Data are reported on the luminescence spectra generated by X-ray and electron irradiation of optical fibres, fibre preforms and silica. The impurities and imperfections in the fibre core have a higher luminescence efficiency than those in the substrate material. The core luminescence provides a major fraction of the total light emission, despite the fact that the core is a small fraction of the total fibre volume. A wide variety of overlapping emission bands are reported. The spectra are strongly temperature dependent but the component emission bands can generally be linked to either Ge impurities, giving the 400 nm band, exciton emission near 460 nm or other blue/UV bands linked to E'-type defects. Overall, the study of the fibre luminescence provides a sensitive technique for analysis d changes and repeatability of fibre fabrication
- …