13 research outputs found
Targeted expression of the human uncoupling protein 2 (hUCP2) to adult neurons extends life span in the fly
SummaryThe oxidative stress hypothesis of aging predicts that a reduction in the generation of mitochondrial reactive oxygen species (ROS) will decrease oxidative damage and extend life span. Increasing mitochondrial proton leak-dependent state 4 respiration by increasing mitochondrial uncoupling is an intervention postulated to decrease mitochondrial ROS production. When human UCP2 (hUCP2) is targeted to the mitochondria of adult fly neurons, we find an increase in state 4 respiration, a decrease in ROS production, a decrease in oxidative damage, heightened resistance to the free radical generator paraquat, and an extension in life span without compromising fertility or physical activity. Our results demonstrate that neuronal-specific expression of hUCP2 in adult flies decreases cellular oxidative damage and is sufficient to extend life span
GAS6 Induces Axl-mediated Chemotaxis of Vascular Smooth Muscle Cells
Atherosclerosis and arterial restenosis are disease processes involving the accumulation of vascular smooth muscle cells following vascular injury. Key events leading to these processes are migration and proliferation of these cells. Here, we demonstrate that GAS6, encoded by the growth arrest-specific gene 6, induces a directed migration (chemotaxis) of both rat and human primary vascular smooth muscle cells while showing only marginal mitogenic potential in human vascular smooth muscle cells. GAS6 stimulation induces Axl autophosphorylation in human vascular smooth muscle cells, indicating that specific GAS6-Axl interactions may be associated with GAS6-directed chemotaxis. To test this hypothesis, vascular smooth muscle cells overexpressing Axl were generated by gene transfer and assessed for their ability to migrate along a GAS6 gradient. These Axl overexpressors exhibited 2-5-fold increased sensitivity to GAS6-induced chemotaxis. Furthermore, vascular smooth muscle cells expressing the kinase dead mutant of Axl or exposure to the soluble Axl extracellular domain showed attenuated GAS6-induced migration. Taken together, these results suggest that GAS6 is a novel chemoattractant that induces Axl-mediated migration of vascular smooth muscle cells. The separation of mitogenesis from migration provided by this study may enhance the molecular dissection of cell migration in vascular damage
Increased energy metabolism rescues glia-induced pathology in a Drosophila model of Huntington's disease.
International audienceHuntington's disease (HD) is a polyglutamine (polyQ) disease caused by an expanded CAG tract within the coding region of Huntingtin protein. Mutant Huntingtin (mHtt) is ubiquitously expressed, abundantly in neurons but also significantly in glial cells. Neuron-intrinsic mechanism and alterations in glia-to-neuron communication both contribute to the neuronal dysfunction and death in HD pathology. However, it remains to be determined the role of glial cells in HD pathogenesis. In recent years, development of Drosophila models facilitated the dissection of the cellular and molecular events in polyQ-related diseases. By using genetic approaches in Drosophila, we manipulated the expression levels of mitochondrial uncoupling proteins (UCPs) that regulate production of both ATP and reactive oxygen species in mitochondria. We discovered that enhanced levels of UCPs alleviated the HD phenotype when mHtt was selectively expressed in glia, including defects in locomotor behavior and early death of Drosophila. In contrast, UCPs failed to prevent the HD toxicity in neurons. Increased oxidative stress defense was found to rescue neuron but not glia-induced pathology. Evidence is now emerging that UCPs are fundamental to adapt the energy metabolism in order to meet the metabolic demand. Thus, we propose that UCPs are glioprotective by rescuing energy-dependent functions in glia that are challenged by mHtt. In support of this, increasing glucose entry in glia was found to alleviate glia-induced pathology. Altogether, our data emphasize the importance of energy metabolism in the glial alterations in HD and may lead to a new therapeutic avenue