5 research outputs found

    Phylogenetic analysis of AAA proteins.

    No full text
    AAA ATPases form a large protein family with manifold cellular roles. They belong to the AAA+ superfamily of ringshaped P-loop NTPases, which exert their activity through the energy-dependent unfolding of macromolecules. Phylogenetic analyses have suggested the existence of five major clades of AAA domains (proteasome subunits, metalloproteases, domains D1 and D2 of ATPases with two AAA domains, and the MSP1/katanin/spastin group), as well as a number of deeply branching minor clades. These analyses however have been characterized by a lack of consistency in defining the boundaries of the AAA family. We have used cluster analysis to delineate unambiguously the group of AAA sequences within the AAA+ superfamily. Phylogenetic and cluster analysis of this sequence set revealed the existence of a sixth major AAA clade, comprising the mitochondrial, membrane-bound protein BCS1 and its homologues. In addition, we identified several deep branches consisting mainly of hypothetical proteins resulting from genomic projects. Analysis of the AAA N-domains provided direct support for the obtained phylogeny for most branches, but revealed some deep splits that had not been apparent from phylogenetic analysis and some unexpected similarities between distant clades. It also revealed highly degenerate D1 domains in plant MSP1 sequences and in at least one deeply branching group of hypothetical proteins (YC46), showing that AAA proteins with two ATPase domains arose at least three times independently

    PhyloGenie: automated phylome generation and analysis.

    No full text
    Phylogenetic reconstruction is the method of choice to determine the homologous relationships between sequences. Difficulties in producing high-quality alignments, which are the basis of good trees, and in automating the analysis of trees have unfortunately limited the use of phylogenetic reconstruction methods to individual genes or gene families. Due to the large number of sequences involved, phylogenetic analyses of proteomes preclude manual steps and therefore require a high degree of automation in sequence selection, alignment, phylogenetic inference and analysis of the resulting set of trees. We present a set of programs that automates the steps from seed sequence to phylogeny and a utility to extract all phylogenies that match specific topological constraints from a database of trees. Two example applications that show the type of questions that can be answered by phylome analysis are provided. The generation and analysis of the Thermoplasma acidophilum phylome with regard to lateral gene transfer between Thermoplasmata and Sulfolobus, showed best BLAST hits to be far less reliable indicators of lateral transfer than the corresponding protein phylogenies.The generation and analysis of the Danio rerio phylome provided more than twice as many proteins as described previously, supporting the hypothesis of an additional round of genome duplication in the actinopterygian lineage

    CLANS: a Java application for visualizing protein families based on pairwise similarity.

    No full text
    SUMMARY: The main source of hypotheses on the structure and function of new proteins is their homology to proteins with known properties. Homologous relationships are typically established through sequence similarity searches, multiple alignments and phylogenetic reconstruction. In cases where the number of potential relationships is large, for example in P-loop NTPases with many thousands of members, alignments and phylogenies become computationally demanding, accumulate errors and lose resolution. In search of a better way to analyze relationships in large sequence datasets we have developed a Java application, CLANS (CLuster ANalysis of Sequences), which uses a version of the Fruchterman-Reingold graph layout algorithm to visualize pairwise sequence similarities in either two-dimensional or three-dimensional space. AVAILABILITY: CLANS can be downloaded at http://protevo.eb.tuebingen.mpg.de/download

    Thermoplasma acidophilum TAA43 is an archaeal member of the eukaryotic meiotic branch of AAA ATPases.

    No full text
    Sequencing of the Thermoplasma acidophilum genome revealed a new gene, taa43 , which codes for a 43-kDa protein containing one AAA domain; we therefore termed it Thermoplasma AAA ATPase of 43 kDa (TAA43). Close homologs of TAA43 are found only in related Thermoplasmales, e.g. T. volcanium and Ferroplasma acidarmanus , but not in other Archaea. A detailed phylogenetic analysis showed that TAA43 and its homologs belong to the 'meiotic' branch of the AAA family. Although AAA proteins usually assemble into high-molecular-weight complexes, native TAA43 is predominantly dimeric except for a minor fraction eluting in the void volume of a sizing column. Wild-type and mutant TAA43 proteins were overexpressed in Escherichia coli , purified as dimers and characterized functionally. Since the canonical proteasome activating nucleotidase is not present in Thermoplasmales, TAA43 was tested for stimulation of proteasome activity, which was, however, not detected. Interestingly, immunoprecipitation analysis with TAA43 specific antibodies found a fraction of native TAA43 associated with Thermoplasma ribosomal proteins

    The genome of Desulfotalea psychrophila, a sulfate-reducing bacterium from permanently cold Arctic sediments.

    No full text
    Desulfotalea psychrophila is a marine sulfate-reducing delta-proteobacterium that is able to grow at in situ temperatures below 0 degrees C. As abundant members of the microbial community in permanently cold marine sediments, D. psychrophila-like bacteria contribute to the global cycles of carbon and sulfur. Here, we describe the genome sequence of D. psychrophila strain LSv54, which consists of a 3 523 383 bp circular chromosome with 3118 predicted genes and two plasmids of 121 586 bp and 14 663 bp. Analysis of the genome gave insight into the metabolic properties of the organism, e.g. the presence of TRAP-T systems as a major route for the uptake of C(4)-dicarboxylates, the unexpected presence of genes from the TCA cycle, a TAT secretion system, the lack of a beta-oxidation complex and typical Desulfovibrio cytochromes, such as c(553), c(3) and ncc. D. psychrophila encodes more than 30 two-component regulatory systems, including a new Ntr subcluster of hybrid kinases, nine putative cold shock proteins and nine potentially cold shock-inducible proteins. A comparison of D. psychrophila's genome features with those of the only other published genome from a sulfate reducer, the hyperthermophilic archaeon Archaeoglobus fulgidus, revealed many striking differences, but only a few shared features
    corecore