3 research outputs found

    Virtual classroom proficiency-based progression for robotic surgery training (VROBOT): a randomised, prospective, cross-over, effectiveness study

    Get PDF
    Robotic surgery training has lacked evidence-based standardisation. We aimed to determine the effectiveness of adjunctive interactive virtual classroom training (VCT) in concordance with the self-directed Fundamentals of Robotic Surgery (FRS) curriculum. The virtual classroom is comprised of a studio with multiple audio-visual inputs to which participants can connect remotely via the BARCO weConnect platform. Eleven novice surgical trainees were randomly allocated to two training groups (A and B). In week 1, both groups completed a robotic skills induction. In week 2, Group A received training with the FRS curriculum and adjunctive VCT; Group B only received access to the FRS curriculum. In week 3, the groups received the alternate intervention. The primary outcome was measured using the validated robotic-objective structured assessment of technical skills (R-OSAT) at the end of week 2 (time-point 1) and 3 (time-point 2). All participants completed the training curriculum and were included in the final analyses. At time-point 1, Group A achieved a statistically significant greater mean proficiency score compared to Group B (44.80 vs 35.33 points, p = 0.006). At time-point 2, there was no significant difference in mean proficiency score in Group A from time-point 1. In contrast, Group B, who received further adjunctive VCT showed significant improvement in mean proficiency by 9.67 points from time-point 1 (95% CI 5.18-14.15, p = 0.003). VCT is an effective, accessible training adjunct to self-directed robotic skills training. With the steep learning curve in robotic surgery training, VCT offers interactive, expert-led learning and can increase training effectiveness and accessibility

    Modern microbial mats and endoevaporites systems in Andean lakes a general approach

    No full text
    Puna wetlands and salars are a unique extreme environment all over the world, since their locations are in high-altitude saline deserts, largely influenced by volcanic activity. Ultraviolet radiation, arsenic content, high salinity, and low dissolved oxygen content, together with extreme daily temperature fluctuations and oligotrophic conditions, shape an environment that recreates the early Earth and, even more so, extraterrestrial conditions. Microbes inhabiting extreme environments face these conditions with different strategies, including formation of intricate microbial communities with an increasing degree of complexity. In that way, biofilms, mats, endoevaporitic mats, domes, and microbialites have been found to exist in association with salars, lagoons, and even volcanic fumaroles in Central Andean extreme environments. They form microbial ecosystems, where light and O2 availability decrease with depth stratification, promoting functional group diversity. This microbial diversity, together with the geochemistry, may favor the precipitation of minerals. This chapter summarizes general concepts in the environmental microbiology of extreme Andean ecosystems, which are explored throughout this book.Fil: Farias, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumån. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Saona Acuña, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumån. Planta Piloto de Procesos Industriales Microbiológicos; Argentin
    corecore