270 research outputs found

    Indiana Bicycle Safety Research Project

    Get PDF

    Amyloid β induces microglia to phagocytose neurons via activation of protein kinase Cs and NADPH oxidase.

    Get PDF
    Alzheimer's disease is characterized by brain plaques of amyloid beta and by neuronal loss, but it is unclear how amyloid beta causes neuronal loss and how to prevent this loss. We have previously shown that amyloid beta causes neuronal loss by inducing microglia to phagocytose neurons, and here we investigated whether protein kinase Cs and NADPH oxidase were involved in this. The loss of neurons induced by amyloid beta in co-cultures of primary glia and neurons was completely prevented by inhibiting protein kinase Cs with Gö6976 or Gö6983. Directly activating protein kinase Cs with phorbol myristate acetate stimulated microglial phagocytosis, and induced neuronal loss mediated by MFG-E8/vitronectin receptor pathway of microglial phagocytosis. Blocking phagocytosis by MFG-E8 knockout or receptor inhibition left live neurons, indicating microglial phagocytosis was the cause of neuronal death. Phorbol myristate acetate stimulated the microglial NADPH oxidase, and inhibiting the oxidase prevented neuronal loss. A physiological activator of NADPH oxidase, fMLP, also induced neuronal loss dependent on microglia. Amyloid beta-induced neuronal loss was blocked by NADPH oxidase inhibitors, superoxide dismutase or Toll-like receptor function-blocking antibodies. The results indicate that amyloid beta induces microglial phagocytosis of neurons via activating protein kinase Cs and NADPH oxidase, and that activating the kinases or oxidase is sufficient to induce neuronal loss by microglial phagocytosis. Thus inhibiting protein kinase Cs or NADPH oxidase might be beneficial in Alzheimer's disease or other brain pathologies involving inflammatory neuronal loss mediated by microglia.This work was partially supported by the Medical Research Council UK (MR/L010593). UN was supported by St John’s College (University of Cambridge), Department of Biochemistry (University of Cambridge) and the Cambridge Trust.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.biocel.2016.06.00

    Interphase Nuclei of Many Mammalian Cell Types Contain Deep, Dynamic, Tubular Membrane-bound Invaginations of the Nuclear Envelope

    Get PDF
    The nuclear envelope consists of a doublemembraned extension of the rough endoplasmic reticulum. In this report we describe long, dynamic tubular channels, derived from the nuclear envelope, that extend deep into the nucleoplasm. These channels show cell-type specific morphologies ranging from single short stubs to multiple, complex, branched structures. Some channels transect the nucleus entirely, opening at two separate points on the nuclear surface, while others terminate at or close to nucleoli. These channels are distinct from other topological features of the nuclear envelope, such as lobes or folds

    Primary phagocytosis of viable neurons by microglia activated with LPS or Aβ is dependent on calreticulin/LRP phagocytic signalling.

    Get PDF
    BACKGROUND: Microglia are resident brain macrophages that can phagocytose dead, dying or viable neurons, which may be beneficial or detrimental in inflammatory, ischaemic and neurodegenerative brain pathologies. Cell death caused by phagocytosis of an otherwise viable cell is called 'primary phagocytosis' or 'phagoptosis'. Calreticulin (CRT) exposure on the surface of cancer cells can promote their phagocytosis via LRP (low-density lipoprotein receptor-related protein) on macrophages, but it is not known whether this occurs with neurons and microglia. METHODS: We used primary cultures of cerebellar neurons, astrocytes and microglia to investigate the potential role of CRT/LRP phagocytic signalling in the phagocytosis of viable neurons by microglia stimulated with lipopolysaccharide (LPS) or nanomolar concentrations of amyloid-β peptide1-42 (Aβ). Exposure of CRT on the neuronal surface was investigated using surface biotinylation and western blotting. A phagocytosis assay was also developed using BV2 and PC12 cell lines to investigate CRT/LRP signalling in microglial phagocytosis of apoptotic cells. RESULTS: We found that BV2 microglia readily phagocytosed apoptotic PC12 cells, but this was inhibited by a CRT-blocking antibody or LRP-blocking protein (receptor-associated protein: RAP). Activation of primary rat microglia with LPS or Aβ resulted in loss of co-cultured cerebellar granule neurons, and this was blocked by RAP or antibodies against CRT or against LRP, preventing all neuronal loss and death. CRT was present on the surface of viable neurons, and this exposure did not change in inflammatory conditions. CRT antibodies prevented microglia-induced neuronal loss when added to neurons, while LRP antibodies prevented neuronal loss when added to the microglia. Pre-binding of CRT to neurons promoted neuronal loss if activated microglia were added, but pre-binding of CRT to microglia or both cell types prevented microglia-induced neuronal loss. CONCLUSIONS: CRT exposure on the surface of viable or apoptotic neurons appears to be required for their phagocytosis via LRP receptors on activated microglia, but free CRT can block microglial phagocytosis of neurons by acting on microglia. Phagocytosis of CRT-exposing neurons by microglia can be a direct cause of neuronal death during inflammation, and might therefore contribute to neurodegeneration and be prevented by blocking the CRT/LRP pathway.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Modulation of transendothelial permeability and expression of ATP-binding cassette transporters in cultured brain capillary endothelial cells by astrocytic factors and cell-culture conditions

    Get PDF
    Confluent cell monolayers of brain capillary endothelial cells (BCEC) are used widely as an in vitro cell culture model of the blood-brain barrier. The present study describes the influence of cell-culture conditions on tight junctions, filamentous-actin cytoskeleton, and expression of ATP-binding cassette (ABC) transporters in primary cell cultures of porcine BCEC. Astrocyte as well as C6 glioma-conditioned cell culture medium was used in combination with retinoic acid, dexamethasone, cyclic adenosine monophosphate (cAMP) analogs, or 1,25-dihydroxyvitamin D3. It was shown that C6-conditioned medium led to a reorganization of filamentous actin and to an improved staining of zonula occludens-associated protein-1 (ZO-1). Further optimization of these culture conditions was achieved with cAMP analogs and dexamethasone. Retinoic acid, as well as 1,25-dihydroxyvitamin D3, did not improve cellular tight junctions as judged by filamentous actin, ZO-1 rearrangement, and transcellular electrical resistance (TER) measurements. However, these morphological changes did not influence the paracellular permeability of the extracellular marker sucrose. Expression of ABC transporters such as P-glycoprotein, multidrug resistance-associated protein-1( MRP1), and MRP2 were compared by measuring messenger RNA (mRNA) levels in whole-brain tissue, isolated brain capillaries, and cultured cells. In freshly isolated BCEC, mRNA levels of MRP2 and P-glycoprotein dropped by two- to sevenfold, respectively, whereas MRP1 mRNA levels were slightly increased. During cell culture, mRNA levels of MRP1 and MRP2 decreased by up to fivefold, while P-glycoprotein levels remained constant. These results were unaltered by different cell-culture conditions. In conclusion, the present study suggests that paracellular permeability, as well as mRNA expression of the studied ABC transporters in primary cultures, of porcine BCEC are insensitive toward changes in cell-culture condition

    Lactobacillus fermentum (PCC®) supplementation and gastrointestinal and respiratory-tract illness symptoms: a randomised control trial in athletes

    Get PDF
    BACKGROUND Probiotics purportedly reduce symptoms of gastrointestinal and upper respiratory-tract illness by modulating commensal microflora. Preventing and reducing symptoms of respiratory and gastrointestinal illness are the primary reason that dietary supplementation with probiotics are becoming increasingly popular with healthy active individuals. There is a paucity of data regarding the effectiveness of probiotics in this cohort. The aim of this study was to evaluate the effectiveness of a probiotic on faecal microbiology, self-reported illness symptoms and immunity in healthy well trained individuals. METHODS Competitive cyclists (64 males and 35 females; age 35 ± 9 and 36 ± 9 y, VO2max 56 ± 6 and 52 ± 6 ml.kg-1.min-1, mean ± SD) were randomised to either probiotic (minimum 1 × 109 Lactobacillus fermentum (PCC®) per day) or placebo treatment for 11 weeks in a double-blind, randomised, controlled trial. The outcome measures were faecal L. fermentum counts, self-reported symptoms of illness and serum cytokines. RESULTS Lactobacillus numbers increased 7.7-fold (90% confidence limits 2.1- to 28-fold) more in males on the probiotic, while there was an unclear 2.2-fold (0.2- to 18-fold) increase in females taking the probiotic. The number and duration of mild gastrointestinal symptoms were ~2-fold greater in the probiotic group. However, there was a substantial 0.7 (0.2 to 1.2) of a scale step reduction in the severity of gastrointestinal illness at the mean training load in males, which became more pronounced as training load increased. The load (duration×severity) of lower respiratory illness symptoms was less by a factor of 0.31 (99%CI; 0.07 to 0.96) in males taking the probiotic compared with placebo but increased by a factor of 2.2 (0.41 to 27) in females. Differences in use of cold and flu medication mirrored these symptoms. The observed effects on URTI had too much uncertainty for a decisive outcome. There were clear reductions in the magnitude of acute exercise-induced changes in some cytokines. CONCLUSION L. fermentum may be a useful nutritional adjunct for healthy exercising males. However, uncertainty in the effects of supplementation on URTI and on symptoms in females needs to be resolved. TRIAL REGISTRATION The trial was registered in the Australia and New Zealand Clinical Trials Registry (ACTRN12611000006943).The study was funded by Christian Hansen A/S, Probiomics and the Australian Institute of Sport

    Participatory Development of a Forage Grass Cultivar

    Get PDF
    Perennial forage grasses exist in both nature and agriculture as a highly heterogeneous mixture of genotypes. Extreme environments, fluctuating environments, and severe managements can impose selection pressures that will result in loss of unadapted genotypes. Mortality of unadapted genotypes leads to dominance of fewer highly adapted genotypes which may be useful as superior germplasm in other similar environments

    Increased surface expression of CD18 and CD11b in leukocytes after tourniquet ischemia during elective hand surgery

    Get PDF
    The surface expression of β2-integrins was investigated in leukocytes from patients undergoing ischemia induced by tourniquet application for elective hand surgery. Blood samples were obtained before initiation, at the end of ischemia, and after 15 minutes of reperfusion from ischemic and contralateral arms of five patients. Comparable expression of CD18, CD11a, CD11b, and CD11c could be detected by immunofluorescence in leukocytes from samples drawn from either arm before tourniquet application. In contrast, a significant increase in the expression of CD18 was detectable in monocytes, granulocytes, and lymphocytes from the ischemic arm compared with that in the nonischemic contralateral control, at the end of the ischemia time (80 ± 16 minutes). A significantly increased expression of CD11b, but not CD11a or CD11c, determinants was also observed in granulocytes and monocytes. Concomitantly, a significant reduction in the percentages of granulocytes in samples from ischemic areas was detectable. After 15 minutes of reperfusion, differences in the expression of these adhesion molecules were no longer significant. The expression of the genes encoding interleukins IL-1α, IL-1β, and IL-6 and tumor necrosis factor alpha (TNFα) proinflammatory cytokines was also studied by reverse polymerase chain reaction (rPCR) in peripheral blood mononuclear cells (PBMCs) obtained from the same samples in three patients. IL-1β or IL-6 gene expression was never observed. Expression of IL-1α and TNFα genes, as detected in two patients, was not related with induction of ischemia. However, in these patients expression of one or both these genes was observed in samples derived from the ischemic but not the control arm after 15 minutes of reperfusion. These data document that overexpression of adhesion molecules and sequestration of leukocytes take place following short ischemia times, as routinely applied clinically for minor surgical procedure

    Impact of Tide-Topography Interactions on Basal Melting of Larsen C Ice Shelf, Antarctica

    Get PDF
    Basal melting of ice shelves around Antarctica contributes to formation of Antarctic Bottom Water and can affect global sea level by altering the offshore flow of grounded ice streams and glaciers. Tides influence ice shelf basal melt rate (w(b)) by contributing to ocean mixing and mean circulation as well as thermohaline exchanges with the ice shelf. We use a three-dimensional ocean model, thermodynamically coupled to a nonevolving ice shelf, to investigate the relationship between topography, tides, and w(b) for Larsen C Ice Shelf (LCIS) in the northwestern Weddell Sea, Antarctica. Using our best estimates of ice shelf thickness and seabed topography, we find that the largest modeled LCIS melt rates occur in the northeast, where our model predicts strong diurnal tidal currents (similar to 0.4 m s(-1)). This distribution is significantly different from models with no tidal forcing, which predict largest melt rates along the deep grounding lines. We compare several model runs to explore melt rate sensitivity to geometry, initial ocean potential temperature (theta(0)), thermodynamic parameterizations of heat and freshwater ice-ocean exchange, and tidal forcing. The resulting range of LCIS-averaged w(b) is similar to 0.11-0.44 m a(-1). The spatial distribution of w(b) is very sensitive to model geometry and thermodynamic parameterization while the overall magnitude of w(b) is influenced by theta(0). These sensitivities in w(b) predictions reinforce a need for high-resolution maps of ice draft and sub-ice-shelf seabed topography together with ocean temperature measurements at the ice shelf front to improve representation of ice shelves in coupled climate system models
    • …
    corecore