61 research outputs found
Ab-initio simulation and experimental validation of beta-titanium alloys
In this progress report we present a new approach to the ab-initio guided
bottom up design of beta-Ti alloys for biomedical applications using a quantum
mechanical simulation method in conjunction with experiments. Parameter-free
density functional theory calculations are used to provide theoretical guidance
in selecting and optimizing Ti-based alloys with respect to three constraints:
(i) the use of non-toxic alloy elements; (ii) the stabilization of the body
centered cubic beta phase at room temperature; (iii) the reduction of the
elastic stiffness compared to existing Ti-based alloys. Following the
theoretical predictions, the alloys of interest are cast and characterized with
respect to their crystallographic structure, microstructure, texture, and
elastic stiffness. Due to the complexity of the ab initio calculations, the
simulations have been focused on a set of binary systems of Ti with two
different high melting bcc metals, namely, Nb and Mo. Various levels of model
approximations to describe mechanical and thermodynamic properties are tested
and critically evaluated. The experiments are conducted both, on some of the
binary alloys and on two more complex engineering alloy variants, namely,
Ti-35wt.%Nb-7wt.%Zr-5wt.%Ta and a Ti-20wt.%Mo-7wt.%Zr-5wt.%Ta.Comment: 23 pages, progress report on ab initio alloy desig
- …