142 research outputs found
Constraining CP violation in neutral meson mixing with theory input
There has been a lot of recent interest in the experimental hints of CP
violation in B_{d,s}^0 mixing, which would be a clear signal of beyond the
standard model physics (with higher significance). We derive a new relation for
the mixing parameters, which allows clearer interpretation of the data in
models in which new physics enters in M_12 and/or \Gamma_12. Our results imply
that the central value of the D\O\ measurement of the semileptonic CP asymmetry
in B_{d,s}^0 decay is not only in conflict with the standard model, but in a
stronger tension with data on \Delta\Gamma_s than previously appreciated. This
result can be used to improve the constraint on \Delta\Gamma or A_SL, whichever
is less precisely measured.Comment: 5 pages, 2 figures, informed of prior derivation of eq. (21), title
modifie
Light dark forces at flavor factories
SuperB experiment could represent an ideal environment to test a new U (1)
symmetry related to light dark forces candidates. A promising discovery channel
is represented by the resonant production of a boson U, followed by its decay
into lepton pairs. Beyond approximations adopted in the literature, an exact
tree level calculation of the radiative processes and corresponding QED
backgrounds is performed, including also the most important higher-order
corrections. The calculation is implemented in a release of the generator
BabaYaga@NLO useful for data analysis and interpretation. The distinct features
of U boson production are shown and the statistical significance is analysed
Singlet Portal to the Hidden Sector
Ultraviolet physics typically induces a kinetic mixing between gauge singlets
which is marginal and hence non-decoupling in the infrared. In singlet
extensions of the minimal supersymmetric standard model, e.g. the
next-to-minimal supersymmetric standard model, this furnishes a well motivated
and distinctive portal connecting the visible sector to any hidden sector which
contains a singlet chiral superfield. In the presence of singlet kinetic
mixing, the hidden sector automatically acquires a light mass scale in the
range 0.1 - 100 GeV induced by electroweak symmetry breaking. In theories with
R-parity conservation, superparticles produced at the LHC invariably cascade
decay into hidden sector particles. Since the hidden sector singlet couples to
the visible sector via the Higgs sector, these cascades necessarily produce a
Higgs boson in an order 0.01 - 1 fraction of events. Furthermore,
supersymmetric cascades typically produce highly boosted, low-mass hidden
sector singlets decaying visibly, albeit with displacement, into the heaviest
standard model particles which are kinematically accessible. We study
experimental constraints on this broad class of theories, as well as the role
of singlet kinetic mixing in direct detection of hidden sector dark matter. We
also present related theories in which a hidden sector singlet interacts with
the visible sector through kinetic mixing with right-handed neutrinos.Comment: 12 pages, 5 figure
Dark Force Detection in Low Energy e-p Collisions
We study the prospects for detecting a light boson X with mass m_X < 100 MeV
at a low energy electron-proton collider. We focus on the case where X
dominantly decays to e+ e- as motivated by recent "dark force" models. In order
to evade direct and indirect constraints, X must have small couplings to the
standard model (alpha_X 10 MeV).
By comparing the signal and background cross sections for the e- p e+ e- final
state, we conclude that dark force detection requires an integrated luminosity
of around 1 inverse attobarn, achievable with a forthcoming JLab proposal.Comment: 38 pages, 19 figures; v2, references adde
Low-Energy Signals from Kinetic Mixing with a Warped Abelian Hidden Sector
We investigate the detailed phenomenology of a light Abelian hidden sector in
the Randall-Sundrum framework. Relative to other works with light hidden
sectors, the main new feature is a tower of hidden Kaluza-Klein vectors that
kinetically mix with the Standard Model photon and Z. We investigate the decay
properties of the hidden sector fields in some detail, and develop an approach
for calculating processes initiated on the ultraviolet brane of a warped space
with large injection momentum relative to the infrared scale. Using these
results, we determine the detailed bounds on the light warped hidden sector
from precision electroweak measurements and low-energy experiments. We find
viable regions of parameter space that lead to significant production rates for
several of the hidden Kaluza-Klein vectors in meson factories and fixed-target
experiments. This offers the possibility of exploring the structure of an extra
spacetime dimension with lower-energy probes.Comment: (1+32) Pages, 13 Figures. v2: JHEP version (minor modifications,
results unchanged
An Electron Fixed Target Experiment to Search for a New Vector Boson A' Decaying to e+e-
We describe an experiment to search for a new vector boson A' with weak
coupling alpha' > 6 x 10^{-8} alpha to electrons (alpha=e^2/4pi) in the mass
range 65 MeV < m_A' < 550 MeV. New vector bosons with such small couplings
arise naturally from a small kinetic mixing of the "dark photon" A' with the
photon -- one of the very few ways in which new forces can couple to the
Standard Model -- and have received considerable attention as an explanation of
various dark matter related anomalies. A' bosons are produced by radiation off
an electron beam, and could appear as narrow resonances with small production
cross-section in the trident e+e- spectrum. We summarize the experimental
approach described in a proposal submitted to Jefferson Laboratory's PAC35,
PR-10-009. This experiment, the A' Experiment (APEX), uses the electron beam of
the Continuous Electron Beam Accelerator Facility at Jefferson Laboratory
(CEBAF) at energies of ~1-4 GeV incident on 0.5-10% radiation length Tungsten
wire mesh targets, and measures the resulting e+e- pairs to search for the A'
using the High Resolution Spectrometer and the septum magnet in Hall A. With a
~1 month run, APEX will achieve very good sensitivity because the statistics of
e+e- pairs will be ~10,000 times larger in the explored mass range than any
previous search for the A' boson. These statistics and the excellent mass
resolution of the spectrometers allow sensitivity to alpha'/alpha one to three
orders of magnitude below current limits, in a region of parameter space of
great theoretical and phenomenological interest. Similar experiments could also
be performed at other facilities, such as the Mainz Microtron.Comment: 19 pages, 12 figures, 2 table
Noise Injection Node Regularization for Robust Learning
We introduce Noise Injection Node Regularization (NINR), a method of
injecting structured noise into Deep Neural Networks (DNN) during the training
stage, resulting in an emergent regularizing effect. We present theoretical and
empirical evidence for substantial improvement in robustness against various
test data perturbations for feed-forward DNNs when trained under NINR. The
novelty in our approach comes from the interplay of adaptive noise injection
and initialization conditions such that noise is the dominant driver of
dynamics at the start of training. As it simply requires the addition of
external nodes without altering the existing network structure or optimization
algorithms, this method can be easily incorporated into many standard problem
specifications. We find improved stability against a number of data
perturbations, including domain shifts, with the most dramatic improvement
obtained for unstructured noise, where our technique outperforms other existing
methods such as Dropout or regularization, in some cases. We further show
that desirable generalization properties on clean data are generally
maintained.Comment: 16 pages, 9 figure
Proceedings of the 2nd Workshop on Flavor Symmetries and Consequences in Accelerators and Cosmology (FLASY12)
These are the proceedings of the 2nd Workshop on Flavor Symmetries and
Consequences in Accelerators and Cosmology, held 30 June 2012 - 4 July 2012,
Dortmund, Germany.Comment: Order 400 pages, several figures including the group picture v2:
corrected author list and contributio
Low-Energy Probes of a Warped Extra Dimension
We investigate a natural realization of a light Abelian hidden sector in an
extended Randall-Sundrum (RS) model. In addition to the usual RS bulk we
consider a second warped space containing a bulk U(1)_x gauge theory with a
characteristic IR scale of order a GeV. This Abelian hidden sector can couple
to the standard model via gauge kinetic mixing on a common UV brane. We show
that if such a coupling induces significant mixing between the lightest U(1)_x
gauge mode and the standard model photon and Z, it can also induce significant
mixing with the heavier U(1)_x Kaluza-Klein (KK) modes. As a result it might be
possible to probe several KK modes in upcoming fixed-target experiments and
meson factories, thereby offering a new way to investigate the structure of an
extra spacetime dimension.Comment: 26 pages, 1 figure, added references, corrected minor typos, same as
journal versio
- …
