16,481 research outputs found

    Evaluation of solar cell welds by scanning acoustic microscopy

    Get PDF
    Scanning laser acoustic microscopy was used to nondestructively evaluate solar cell interconnect bonds made by resistance welding. Both copper-silver and silver-silver welds were analyzed. The bonds were produced either by a conventional parallel-gap welding technique using rectangular electrodes or new annular gap design with a circular electrode cross section. With the scanning laser acoustic microscope, it was possible to produce a real time television image which reveales the weld configuration as it relates to electrode geometry. The effect of electrode misalinement with the surface of the cell was also determined. A preliminary metallographic analysis was performed on selected welds to establish the relationship between actual size and shape of the weld area and the information available from acoustic micrographs

    Studying top quark decay into the polarized W-boson in the TC2 model

    Full text link
    We study the decay mode of top quark decaying into Wb in the TC2 model where the top quark is distinguished from other fermions by participating in a strong interaction. We find that the TC2 correction to the decay width Γ(t→bW)\Gamma (t \to b W) is generally several percent and maximum value can reach 8% for the currently allowed parameters. The magnitude of such correction is comparable with QCD correction and larger than that of minimal supersymmetric model. Such correction might be observable in the future colliders. We also study the TC2 correction to the branching ratio of top quark decay into the polarized W bosons and find the correction is below 1 1 % . After considering the TC2 correction, we find that our theoretical predictions about the decay branching ratio are also consistent with the experimental data.Comment: 8 pages, 4 figure

    Scaling function for the noisy Burgers equation in the soliton approximation

    Full text link
    We derive the scaling function for the one dimensional noisy Burgers equation in the two-soliton approximation within the weak noise canonical phase space approach. The result is in agreement with an earlier heuristic expression and exhibits the correct scaling properties. The calculation presents the first step in a many body treatment of the correlations in the Burgers equation.Comment: Replacement: Several corrections, 4 pages, Revtex file, 3 figures. To appear in Europhysics Letter

    Nonlinear ptychographic coherent diffractive imaging

    Get PDF
    Ptychographic Coherent diffractive imaging (PCDI) is a significant advance in imaging allowing the measurement of the full electric field at a sample without use of any imaging optics. So far it has been confined solely to imaging of linear optical responses. In this paper we show that because of the coherence-preserving nature of nonlinear optical interactions, PCDI can be generalised to nonlinear optical imaging. We demonstrate second harmonic generation PCDI, directly revealing phase information about the nonlinear coefficients, and showing the general applicability of PCDI to nonlinear interactions

    Mechanics of bundled semiflexible polymer networks

    Get PDF
    While actin bundles are used by living cells for structural fortification, the microscopic origin of the elasticity of bundled networks is not understood. Here, we show that above a critical concentration of the actin binding protein fascin, a solution of actin filaments organizes into a pure network of bundles. While the elasticity of weakly crosslinked networks is dominated by the affine deformation of tubes, the network of bundles can be fully understood in terms of non-affine bending undulations.Comment: 5 pages, 3 figures, final version as publishe

    Canonical phase space approach to the noisy Burgers equation

    Full text link
    Presenting a general phase approach to stochastic processes we analyze in particular the Fokker-Planck equation for the noisy Burgers equation and discuss the time dependent and stationary probability distributions. In one dimension we derive the long-time skew distribution approaching the symmetric stationary Gaussian distribution. In the short time regime we discuss heuristically the nonlinear soliton contributions and derive an expression for the distribution in accordance with the directed polymer-replica model and asymmetric exclusion model results.Comment: 4 pages, Revtex file, submitted to Phys. Rev. Lett. a reference has been added and a few typos correcte

    Predictions of the causal entropic principle for environmental conditions of the universe

    Full text link
    The causal entropic principle has been proposed as a superior alternative to the anthropic principle for understanding the magnitude of the cosmological constant. In this approach, the probability to create observers is assumed to be proportional to the entropy production \Delta S in a maximal causally connected region -- the causal diamond. We improve on the original treatment by better quantifying the entropy production due to stars, using an analytic model for the star formation history which accurately accounts for changes in cosmological parameters. We calculate the dependence of \Delta S on the density contrast Q=\delta\rho/\rho, and find that our universe is much closer to the most probable value of Q than in the usual anthropic approach and that probabilities are relatively weakly dependent on this amplitude. In addition, we make first estimates of the dependence of \Delta S on the baryon fraction and overall matter abundance. Finally, we also explore the possibility that decays of dark matter, suggested by various observed gamma ray excesses, might produce a comparable amount of entropy to stars.Comment: RevTeX4, 13pp, 10 figures; v2. clarified introduction, added ref

    Statics and Dynamics of the Wormlike Bundle Model

    Get PDF
    Bundles of filamentous polymers are primary structural components of a broad range of cytoskeletal structures, and their mechanical properties play key roles in cellular functions ranging from locomotion to mechanotransduction and fertilization. We give a detailed derivation of a wormlike bundle model as a generic description for the statics and dynamics of polymer bundles consisting of semiflexible polymers interconnected by crosslinking agents. The elastic degrees of freedom include bending as well as twist deformations of the filaments and shear deformation of the crosslinks. We show that a competition between the elastic properties of the filaments and those of the crosslinks leads to renormalized effective bend and twist rigidities that become mode-number dependent. The strength and character of this dependence is found to vary with bundle architecture, such as the arrangement of filaments in the cross section and pretwist. We discuss two paradigmatic cases of bundle architecture, a uniform arrangement of filaments as found in F-actin bundles and a shell-like architecture as characteristic for microtubules. Each architecture is found to have its own universal ratio of maximal to minimal bending rigidity, independent of the specific type of crosslink induced filament coupling; our predictions are in reasonable agreement with available experimental data for microtubules. Moreover, we analyze the predictions of the wormlike bundle model for experimental observables such as the tangent-tangent correlation function and dynamic response and correlation functions. Finally, we analyze the effect of pretwist (helicity) on the mechanical properties of bundles. We predict that microtubules with different number of protofilaments should have distinct variations in their effective bending rigidity

    Crossover from Isotropic to Directed Percolation

    Full text link
    Percolation clusters are probably the simplest example for scale--invariant structures which either are governed by isotropic scaling--laws (``self--similarity'') or --- as in the case of directed percolation --- may display anisotropic scaling behavior (``self--affinity''). Taking advantage of the fact that both isotropic and directed bond percolation (with one preferred direction) may be mapped onto corresponding variants of (Reggeon) field theory, we discuss the crossover between self--similar and self--affine scaling. This has been a long--standing and yet unsolved problem because it is accompanied by different upper critical dimensions: dcI=6d_c^{\rm I} = 6 for isotropic, and dcD=5d_c^{\rm D} = 5 for directed percolation, respectively. Using a generalized subtraction scheme we show that this crossover may nevertheless be treated consistently within the framework of renormalization group theory. We identify the corresponding crossover exponent, and calculate effective exponents for different length scales and the pair correlation function to one--loop order. Thus we are able to predict at which characteristic anisotropy scale the crossover should occur. The results are subject to direct tests by both computer simulations and experiment. We emphasize the broad range of applicability of the proposed method.Comment: 19 pages, written in RevTeX, 12 figures available upon request (from [email protected] or [email protected]), EF/UCT--94/2, to be published in Phys. Rev. E (May 1994
    • …
    corecore