32,985 research outputs found
Composite magnetic dark matter and the 130 GeV line
We propose an economical model to explain the apparent 130 GeV gamma ray
peak, found in the Fermi/LAT data, in terms of dark matter annihilation through
a dipole moment interaction. The annihilating dark matter particles represent a
subdominant component, with mass density 7-17% of the total DM density; and
they only annihilate into gamma gamma, gamma Z, and ZZ, through a magnetic (or
electric) dipole moment. Annihilation into other standard model particles is
suppressed, due to a mass splitting in the magnetic dipole case, or to p-wave
scattering in the electric dipole case. In either case, the observed signal
requires a dipole moment of strength mu ~ 2/TeV. We argue that composite models
are the preferred means of generating such a large dipole moment, and that the
magnetic case is more natural than the electric one. We present a simple model
involving a scalar and fermionic techniquark of a confining SU(2) gauge
symmetry. We point out some generic challenges for getting such a model to
work. The new physics leading to a sufficiently large dipole moment is below
the TeV scale, indicating that the magnetic moment is not a valid effective
operator for LHC physics, and that production of the strongly interacting
constituents, followed by techni-hadronization, is a more likely signature than
monophoton events. In particular, 4-photon events from the decays of bound
state pairs are predicted.Comment: 8 pages, 5 figures; v2. fixed typos, clarifications, added discussion
of model-building challenges; v3. clarifications added, discussion improved,
accepted for publication in PR
Stochastic Yield Catastrophes and Robustness in Self-Assembly
A guiding principle in self-assembly is that, for high production yield,
nucleation of structures must be significantly slower than their growth.
However, details of the mechanism that impedes nucleation are broadly
considered irrelevant. Here, we analyze self-assembly into finite-sized target
structures employing mathematical modeling. We investigate two key scenarios to
delay nucleation: (i) by introducing a slow activation step for the assembling
constituents and, (ii) by decreasing the dimerization rate. These scenarios
have widely different characteristics. While the dimerization scenario exhibits
robust behavior, the activation scenario is highly sensitive to demographic
fluctuations. These demographic fluctuations ultimately disfavor growth
compared to nucleation and can suppress yield completely. The occurrence of
this stochastic yield catastrophe does not depend on model details but is
generic as soon as number fluctuations between constituents are taken into
account. On a broader perspective, our results reveal that stochasticity is an
important limiting factor for self-assembly and that the specific
implementation of the nucleation process plays a significant role in
determining the yield
Dynamic Light Scattering from Semidilute Actin Solutions: A Study of Hydrodynamic Screening, Filament Bending Stiffness and the Effect of Tropomyosin/Troponin-Binding
Quasi-elastic light scattering (QELS) is applied to investigate the effect of
the tropomyosin/troponin complex (Tm/Tn) on the stiffness of actin filaments.
The importance of hydrodynamic screening in semidilute solutions is
demonstrated. A new concentration dependent expression for the dynamic
structure factor of semiflexible polymers in semidilute solutions
is used to analyze the experimental QELS data. A concentration independent
value for the bending modulus is thus obtained. It increases by 50\%
as a consequence of Tm/Tn binding in a 7:1:1 molar ratio of actin/Tm/Tn. In
addition a new expression for the initial slope of the dynamic structure factor
of a semiflexible polymer is used to determine the effective hydrodynamic
diameter of the actin filament. Our results confirm the general relevance of
the concept of (intrinsic) semiflexibility to polymer dynamics.Comment: 9 pages, RevTeX, 9 figures, all uuencoded gzipe
Stiff Polymers, Foams and Fiber Networks
We study the elasticity of fibrous materials composed of generalized stiff
polymers. It is shown that in contrast to cellular foam-like structures affine
strain fields are generically unstable. Instead, a subtle interplay between the
architecture of the network and the elastic properties of its building blocks
leads to intriguing mechanical properties with intermediate asymptotic scaling
regimes. We present exhaustive numerical studies based on a finite element
method complemented by scaling arguments.Comment: 4 pages, 5 figure
Physical limitations to the spatial resolution of solid-state detectors
In this paper we explore the effect of -ray emission, fluctuations in
th e signal deposition on the detection of charged particles in silicon-based
detec tors. We show that these two effects ultimately limit the resolution that
can be achieved by interpolation of the signal in finely segmented
position-sensitive solid-state devices.Comment: 5 page
Mechanics of bundled semiflexible polymer networks
While actin bundles are used by living cells for structural fortification,
the microscopic origin of the elasticity of bundled networks is not understood.
Here, we show that above a critical concentration of the actin binding protein
fascin, a solution of actin filaments organizes into a pure network of bundles.
While the elasticity of weakly crosslinked networks is dominated by the affine
deformation of tubes, the network of bundles can be fully understood in terms
of non-affine bending undulations.Comment: 5 pages, 3 figures, final version as publishe
- …
