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Abstract A guiding principle in self-assembly is that, for high production yield, nucleation of

structures must be significantly slower than their growth. However, details of the mechanism that

impedes nucleation are broadly considered irrelevant. Here, we analyze self-assembly into finite-

sized target structures employing mathematical modeling. We investigate two key scenarios to

delay nucleation: (i) by introducing a slow activation step for the assembling constituents and, (ii) by

decreasing the dimerization rate. These scenarios have widely different characteristics. While the

dimerization scenario exhibits robust behavior, the activation scenario is highly sensitive to

demographic fluctuations. These demographic fluctuations ultimately disfavor growth compared to

nucleation and can suppress yield completely. The occurrence of this stochastic yield catastrophe

does not depend on model details but is generic as soon as number fluctuations between

constituents are taken into account. On a broader perspective, our results reveal that stochasticity

is an important limiting factor for self-assembly and that the specific implementation of the

nucleation process plays a significant role in determining the yield.

Introduction
Efficient and accurate assembly of macromolecular structures is vital for living organisms. Not only

must resource use be carefully controlled, but malfunctioning aggregates can also pose a substantial

threat to the organism itself (Jucker and Walker, 2013; Drummond and Wilke, 2009). Furthermore,

artificial self-assembly processes have important applications in a variety of research areas like nano-

technology, biology, and medicine (Zhang, 2003; Whitesides and Grzybowski, 2002;

Whitesides et al., 1991). In these areas, we find a broad range of assembly schemes. For example,

while a large number of viruses assemble capsids from identical protein subunits, some others, like

the Escherichia virus T4, form highly complex and heterogeneous virions encompassing many differ-

ent types of constituents (Zlotnick et al., 1999; Zlotnick, 2003; Hagan, 2014; Leiman et al., 2010).

Furthermore, artificially built DNA structures can reach up to Gigadalton sizes and can, in principle,

comprise an unlimited number of different subunits (Ke et al., 2012; Reinhardt and Frenkel, 2014;

Gerling et al., 2015; Wagenbauer et al., 2017). Notwithstanding these differences, a generic self-

assembly process always includes three key steps: First, subunits must be made available,

for example by gene expression, or rendered competent for binding, for example by nucleotide

exchange (Alberts and Johnson, 2015; Chen et al., 2008; Whitelam, 2015) (‘activation’). Second,

the formation of a structure must be initiated by a nucleation event (‘nucleation’). Due to coopera-

tive or allosteric effects in binding, there might be a significant nucleation barrier (Chen et al., 2008;

Jacobs and Frenkel, 2015; Sear, 2007; Lazaro and Hagan, 2016; Hagan and Elrad, 2010). Third,

following nucleation, structures grow via aggregation of substructures (‘growth’). To avoid kinetic

traps that may occur due to irreversibility or very slow disassembly of substructures (Hagan et al.,

2011; Grant et al., 2011), structure nucleation must be significantly slower than growth
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(Zlotnick et al., 1999; Ke et al., 2012; Reinhardt and Frenkel, 2014; Wei et al., 2012;

Jacobs et al., 2015; Hagan and Elrad, 2010). Physically speaking, there are no irreversible reac-

tions. However, in the biological context, self-assembly describes the (relatively fast) formation of

long-lasting, stable structures. Therefore, at least part of the assembly reactions are often consid-

ered to be irreversible on the time scale of the assembly process. In this manuscript we investigate,

for a given target structure, whether the nature of the specific mechanism employed in order to slow

down nucleation influences the yield of assembled product. To address this question, we examine a

generic model that incorporates the key elements of self-assembly outlined above.

Model definition
We model the assembly of a fixed number of well-defined target structures from limited resources.

Specifically, we consider a set of S different species of constituents denoted by 1; . . . ; S which assem-

ble into rings of size L. The cases S ¼ 1 and 1<S � L (S ¼ L) are denoted as homogeneous and par-

tially (fully) heterogeneous, respectively. The homogeneous model builds on previous work on virus

capsid (Chen et al., 2008; Hagan et al., 2011), linear protein filament assembly (Michaels et al.,

2016; Michaels et al., 2017; D’Orsogna et al., 2012) and aggregation and polymerization models

(Krapivsky et al., 2010). The heterogeneous model in turn links to previous model systems used to

study, for example, DNA-brick-based assembly of heterogeneous structures (Murugan et al., 2015;

Hedges et al., 2014; D’Orsogna et al., 2013). We emphasize that, even though strikingly similar

experimental realizations of our model exist (Gerling et al., 2015; Wagenbauer et al., 2017;

Praetorius and Dietz, 2017), it is not intended to describe any particular system. The ring structure

represents a general linear assembly process involving building blocks with equivalent binding prop-

erties and resulting in a target of finite size. The main assumption in the ring model is that the differ-

ent constituents assemble linearly in a sequential order. In many biological self-assembling systems

like bacterial flagellum assembly or biogenesis of the ribosome subunits the assumption of a linear

binding sequence appears to be justified (Peña et al., 2017; Chevance and Hughes, 2008). In order

eLife digest The self-assembly of a large biological molecule from small building blocks is like

finishing a puzzle of magnetic pieces by shaking the box. Even though each piece of the puzzle is

attracted to its correct neighbours, the limited control makes it very hard to finish the puzzle in a

short amount of time.

The problem becomes even more difficult if several copies of the same puzzle are assembled in

one box. If several puzzles start at the same time, the different parts might steal pieces from each

other, making it impossible to successfully complete any of the puzzles. This is called a depletion

trap. If the box is only shaken and there is no real control over individual pieces, these traps occur at

random.

Overcoming these random depletion traps is an important challenge when assembling

nanostructures and other artificial molecules designed by humans without wasting many, potentially

expensive, components. Previous studies have shown that when multiple copies of the same

structure are assembled simultaneously, slowing the rate of initiation increases the yield of correctly-

made structures. This prevents new structures from stealing pieces from existing structures before

they are fully completed.

Now, Gartner, Graf, Wilke et al. have used a mathematical model to show that changing the way

initiation is delayed leads to different yields. This was especially true for small systems where

fluctuations in the availability of the different pieces strongly enhanced the initiation of new

structures. In these cases, the self-assembly process terminated undesirably with many incomplete

structures.

Nanostructures have various applications ranging from drug delivery to robotics. These findings

suggest that in order to efficiently assemble biological molecules, the concentrations of the different

building blocks need to be tightly controlled. A question for further research is to investigate

strategies that reduce fluctuations in the availability of the building blocks to develop more efficient

assembly protocols.
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to test the validity of our results beyond these constraints we also perform stochastic simulations of

generalized self-assembling systems that do not obey a sequential binding order: i) by explicitly

allowing for polymer-polymer bindings and ii) by considering the assembly of finite sized squares

that grow independently in two dimensions (see Figures 6 and 7).

The assembly process starts with N inactive monomers of each species. We use C ¼ N=V to

denote the initial concentration of each monomer species, where V is the reaction volume. Mono-

mers are activated independently at the same per capita rate a, and, once active, are available for

binding. Binding takes place only between constituents of species with periodically consecutive indi-

ces, for example 1 and 2 or S and 1 (leading to structures such as . . .1231. . . for S ¼ 3); see Figure 1.

To avoid ambiguity, we restrict ring sizes to integer multiples of the number of species S. Further-

more, we neglect the possibility of incorrect binding, for example species 1 binding to 3 or S�1. Pol-

ymers, that is incomplete ring structures, grow via consecutive attachment of monomers. For

simplicity, polymer-polymer binding is disregarded at first, as it is typically assumed to be of minor

importance (Zlotnick et al., 1999; Chen et al., 2008; Murugan et al., 2015; Haxton and Whitelam,

2013). To probe the robustness of the model, later we consider an extended model including poly-

mer-polymer binding for which the results are qualitatively the same (see Figure 6 and the discus-

sion). Furthermore, it has been observed that nucleation phenomena play a critical role for self-

assembly processes (Ke et al., 2012; Wei et al., 2012; Reinhardt and Frenkel, 2014; Chen et al.,

2008). So it is in general necessary to take into account a critical nucleation size, which marks the

transition between slow particle nucleation and the faster subsequent structure growth

(Michaels et al., 2016; Lazaro and Hagan, 2016; Morozov et al., 2009; Murugan et al., 2015). We

denote this critical nucleation size by Lnuc, which in terms of classical nucleation theory corresponds

to the structure size at which the free energy barrier has its maximum. For l<Lnuc attachment of

monomers to existing structures and decay of structures (reversible binding) into monomers take

place at size-dependent reaction rates �l and dl, respectively (Figure 1). Here, we focus on identical

rates �l ¼ � and dl ¼ d. A discussion of the general case is given in Appendix 4. Above the nucle-

ation size, polymers grow by attachment of monomers with reaction rate n � � per binding site. As
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Figure 1. Schematic description of the model. (a) Rings of size L are assembled from S different particle species. N

monomers of each species are initially in an inactive state (blue) and are activated at the same per-capita rate a.

Once active (green), species with periodically consecutive index can bind to each other. Structures grow by

attachment of single monomers. Below a critical nucleation size (Lnuc), structures of size l (light yellow) grow and

decay into monomers at size-dependent rates �l and dl, respectively. Above the critical size, polymers (dark

yellow) are stable and grow at size-independent rate n until the ring is complete (the absorbing state; red). (b)

Illustration of depletion traps. If nucleation is slow compared to growth, initiated structures are likely to be

completed. Otherwise, many stable nuclei will form that cannot be completed before resources run out.

Gartner et al. eLife 2020;9:e51020. DOI: https://doi.org/10.7554/eLife.51020 3 of 37

Research article Physics of Living Systems

https://doi.org/10.7554/eLife.51020


we consider successfully nucleated structures to be stable on the observational time scales, mono-

mer detachment from structures above the critical nucelation size is neglected (irreversible binding)

(Murugan et al., 2015; Chen et al., 2008). Complete rings neither grow nor decay (absorbing

state).

We investigate two scenarios for the control of nucleation speed, first separately and then in com-

bination. For the ‘activation scenario’ we set � ¼ n (all binding rates are equal) and control the

assembly process by varying the activation rate a. For the ‘dimerization scenario’ all particles are

inherently active (a ! ¥) and we control the assembly process by varying the dimerization rate � (we

focus on Lnuc ¼ 2). It has been demonstrated previously in Chen et al. (2008) and (Endres and Zlot-

nick, 2002; Hagan and Elrad, 2010; Morozov et al., 2009) that either a slow activation or a slow

dimerization step are suitable in principle to retard nucleation and favour growth of the structures

over the initiation of new ones. We quantify the quality of the assembly process in terms of the

assembly yield, defined as the number of successfully assembled ring structures relative to the maxi-

mal possible number NS=L. Yield is measured when all resources have been used up and the system

has reached its final state. We do not discuss the assembly time in this manuscript, however, in

Appendix 5 we show typical trajectories for the time evolution of the yield in the activation and

dimerization scenario. If the assembly product is stable (absorbing state), the yield can only increase

with time. Consequently, the final yield constitutes the upper limit for the yield irrespective of addi-

tional time constraints. Therefore, the final yield is an informative and unambiguous observable to

describe the efficiency of the assembly reaction.

We simulated our system both stochastically via Gillespie’s algorithm (Gillespie, 2007) and deter-

ministically as a set of ordinary differential equations corresponding to chemical rate equations (see

Appendix 1).

Results

Deterministic behavior in the macroscopic limit
First, we consider the macroscopic limit, N � 1, and investigate how assembly yield depends on the

activation rate a (activation scenario) and the dimerization rate � (dimerization scenario) for Lnuc ¼ 2.

Here, the deterministic description coincides with the stochastic simulations (Figure 2a and b). For

both high activation and high dimerization rates, yield is very poor. Upon decreasing either the acti-

vation rate (Figure 2a) or the dimerization rate (Figure 2b), however, we find a threshold value, ath

or �th , below which a rapid transition to the perfect yield of 1 is observed both in the deterministic

and stochastic simulation. By exploiting the symmetries of the system with respect to relabeling of

species, one can show that, in the deterministic limit, the behavior is independent of the number of

species S (for fixed L and N, see Appendix 1). Consequently, all systems behave equivalently to the

homogeneous system and yield becomes independent of S in this limit. Note, however, that equiva-

lent systems with differing S have different total numbers of particles SN and hence assemble differ-

ent total numbers of rings.

Decreasing the activation rate reduces the concentration of active monomers in the system.

Hence growth of the polymers is favored over nucleation, because growth depends linearly on the

concentration of active monomers while nucleation shows a quadratic dependence. Likewise, lower

dimerization rates slow down nucleation relative to growth. Both mechanisms therefore restrict the

number of nucleation events, and ensure that initiated structures can be completed before resources

become depleted (see Figure 2c and d).

Mathematically, the deterministic time evolution of the polymer size distribution cðl; tÞ is

described by an advection-diffusion equation (Endres and Zlotnick, 2002; Yvinec et al., 2012) with

advection and diffusion coefficients depending on the instantaneous concentration of active mono-

mers (see Appendix 2). Solving this equation results in the wavefront of the size distribution advanc-

ing from small to large polymer sizes (Figure 2e). Yield production sets in as soon as the distance

travelled by this wavefront reaches the maximal ring size L. Exploiting this condition, we find that in

the deterministic system for Lnuc ¼ 2, a non-zero yield is obtained if either the activation rate or the

dimerization rate remains below a corresponding threshold value, that is if a<ath or �<�th, where
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ath ¼ Pa

n

�

nC

ðL�
ffiffiffi
L

p
Þ3

and �th ¼ P�
n

ðL�
ffiffiffi
L

p
Þ2

(1)

(see Appendix 3) with proportionality constants Pa ¼ ½ ffiffiffiffipp
Gð2=3Þ=Gð7=6Þ�3=3»5:77 and

P� ¼p2=2»4:93. These relations generalize previous results (Morozov et al., 2009) to finite activa-

tion rates and for heterogeneous systems. A comparison between the threshold values given by

Equation 1 and the simulated yield curves is shown in Figure 2a,b. The relations highlight important

differences between the two scenarios (where a!¥ and �¼ n, respectively): While ath decreases

cubically with the ring size L, �th does so only quadratically. Furthermore, the threshold activation

rate ath increases with the initial monomer concentration C. Consequently, for fixed activation rate,

the yield can be optimized by increasing C. In contrast, the threshold dimerization rate is indepen-

dent of C and the yield curves coincide for N � 1. Finally, if a is finite and �<n, the interplay between

the two slow-nucleation scenarios may lead to enhanced yield. This is reflected by the factor n=� in

ath, and we will come back to this point later when we discuss the stochastic effects.

In summary, for large particle numbers (N � 1), perfect yield can be achieved in two different

ways, independently of the heterogeneity of the system - by decreasing either the activation rate

(activation scenario) or the dimerization rate (dimerization scenario) below its respective threshold

value.
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Figure 2. Deterministic behavior in the macroscopic limit N � 1. (a, b) Yield for different particle numbers N

(symbols) and ring sizes L (colors) for Lnuc ¼ 2. Decreasing either (a) the activation rate (‘activation scenario’: � ¼ n )

or (b) the dimerization rate (‘dimerization scenario’: a ! ¥) achieves perfect yield. The stochastic simulation results

(symbols) average over 16 realizations and agree exactly with the integration of the chemical rate equations (lines).

The threshold values (Equation 1) are indicated by the vertical dashed lines. Plotting yield against the

dimensionless quantity a=ðnCÞ causes the curves for different C to collapse into a single master curve (inset in a).

For both scenarios there is no dependency on the number of species S in the deterministic limit. (c, d) Illustration

showing how depletion traps are avoided by either slow activation (c) or slow dimerization (d). If the activation or

the dimerization rate is small (large) compared to the growth rate, assembly paths leading to complete rings are

favored (disfavored). The color scheme is the same as in Figure 1. (e) Deterministically, the size distribution of

polymers behaves like a wave, and is shown for large and small activation rate for L ¼ 60, Lnuc ¼ 2, N ¼ 10000 and

� ¼ n ¼ 1. The distributions are obtained from a numerical integration of the deterministic mean-field dynamics,

Equation 6, and are plotted for early, intermediate and final simulation times. The respective percentage of

inactive monomers and complete rings is indicated by the symbols in the scale bar on the left or right.
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Stochastic effects in the case of reduced resources
Next, we consider the limit where the particle number becomes relevant for the physics of the sys-

tem. In the activation scenario, we find a markedly different phenomenology if resources are sparse.

Figure 3a shows the dependence of the average yield on the activation rate for different, low parti-

cle numbers in the completely heterogeneous case (S ¼ L). Here, we restrict our discussion to the

average yield. The error of the mean is negligible due to the large number of simulations used to

calculate the average yield. Still, due to the randomness in binding and activation, the yield can dif-

fer between simulations. A figure with the average yield and its standard deviation is shown in

Appendix 6. For very low and very high average yield, the standard deviation has to be small due to

the boundedness of the yield. For intermediate values of the average, the standard deviation is high-

est but still small compared to the average yield. Thus, the average yield is meaningful for the essen-

tial understanding of the assembly process. Whereas the deterministic theory predicts perfect yield

for small activation rates, in the stochastic simulation yield saturates at an imperfect value ymax<1.

Reducing the particle number N decreases this saturation value ymax until no finished structures are

produced (ymax ! 0). The magnitude of this effect strongly depends on the size of the target struc-

ture L if the system is heterogeneous. Figure 3c shows a diagram characterizing different regimes

for the saturation value of the yield, ymaxðN; LÞ, in dependence of the particle number N and the size

of the target structure L for fully heterogeneous systems ðS ¼ LÞ. We find that the threshold particle

number N th
y necessary to obtain a fixed yield y increases nonlinearly with the target size L. For the

depicted range of L, the dependence of the threshold for nonzero yield, N th
>0, on L can approxi-

mately be described by a power-law: N th
>0 ~ L

�, with exponent � » 2:8 for L � 600. Consequently, for

y
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Figure 3. Stochastic effects in the case of reduced resources. (a, b) Yield of the fully heterogeneous system (S ¼ L)

for reduced number of particles (symbols) for L ¼ 60 and Lnuc ¼ 2 averaged over 1024 ensembles. In the activation

scenario, at low activation rates the yield saturates at an imperfect value ymax, which decreases with the number of

particles (a). This finding disagrees with the deterministic prediction (black line) of perfect yield for a ! 0. In

contrast, the dimerization scenario robustly exhibits the maximal yield of 1 for small N, in agreement with the

deterministic prediction (black line) (b). (c) Diagram showing different regimes of ymaxðN; LÞ in dependence of the

particle number N and target size L (for the fully heterogeneous system S ¼ L) as obtained from stochastic

simulations in the limit a ! 0. The minimal number of particles necessary to obtain a fixed yield increases in a

strongly nonlinear way with the target size. The symbols along the line L ¼ 60 represent the saturation values of

the yield curves in (a). (d) Dependence of ymax on the number of species S for fixed L ¼ 60 and fixed number of

ring structures NS=L. Symbols indicate different values of the critical nucleation size Lnuc. The impact of stochastic

effects strongly depends on the number of species under the constraint of a fixed total number of particles NS and

fixed target size L. The homogeneous system is not subject to stochastic effects at all. Higher reversibility for

larger Lnuc also mitigates stochastic effects.
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L ¼ 600 already more than 105 rings must be assembled in order to obtain a yield larger than zero.

In Appendix 8 we included two additional plots that show the dependence of ymax on N for fixed L

and the dependence on L for fixed N, respectively. The suppression of the yield is caused by fluctua-

tions (see explanation below) and is not captured by a deterministic description. Because these sto-

chastic effects can decrease the yield from a perfect value in a deterministic description to zero (see

Figure 3a), we term this effect ‘stochastic yield catastrophe’. For fixed target size L and fixed maxi-

mum number of target structures NS
L
, ymax increases with decreasing number of species, see

Figure 3d. In the fully homogeneous case, S ¼ 1, a perfect yield of 1 is always achieved for a ! 0.

The decrease of the maximal yield with the number of species S thus suggests that, in order to

obtain high yield, it is beneficial to design structures with as few different species as possible. In

large part this effect is due to the constraint SN ¼ const, whereby the more homogeneous systems

(small S) require larger numbers of particles per species N and, correspondingly, exhibit less stochas-

ticity. If N is fixed instead of SN, the yield still initially decreases with increasing number of species S

but then quickly reaches a stationary plateau and gets independent of S for S � 1, see Appendix 7.

Moreover, increasing the nucleation size Lnuc, and with it the reversibility of binding, also increases

ymax, see Figure 3(d). This indicates that, beside heterogeneity of the target structure, irreversibility

of binding on the relevant time scale makes the system susceptible to stochastic effects.

The stochastic yield catastrophe is mainly attributable to fluctuations in the number of active

monomers. In the deterministic (mean-field) equation the different particle species evolve in bal-

anced stoichiometric concentrations. However, if activation is much slower than binding, the number

of active monomers present at any given time is small, and the mean-field assumption of equal con-

centrations is violated due to fluctuations (for S>1). Activated monomers then might not fit any of

the existing larger structures and would instead initiate new structures. Figure 4a illustrates this

effect and shows how fluctuations in the availability of active particles lead to an enhanced nucle-

ation and, correspondingly, to a decrease in yield. Due to the effective enhancement of the nucle-

ation rate, the resulting polymer size distribution has a higher amplitude than that predicted

deterministically (Figure 4b) and the system is prone to depletion traps. A similar broadening of the

size distribution has been reported in the context of stochastic coagulation-fragmentation of identi-

cal particles (D’Orsogna et al., 2015).

In the dimerization scenario, in contrast, there is no stochastic activation step. All particles are

available for binding from the outset. Consequently, stochastic effects do not play an essential role

in the dimerization scenario and perfect yield can be reached robustly for all system sizes, regardless

of the number of species S (Figure 3(b)).
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Figure 4. Cause and effect of stochasticity in the activation scenario. (a) Illustration of the significance of stochastic

effects when resources are sparse. Arrows indicate possible transitions and the probabilities in the depicted

situation for sufficiently small activation rate a. For small a, the random order of activation alone determines the

availability of monomers and therefore the order of binding. In the depicted situation, the complete structure is

assembled only with probability 1/2. In all other cases, only fragments of the structure are assembled such that the

final yield is decreased. (b) Polymer size distribution for the activation scenario (symbols) as obtained from

stochastic simulations, in comparison with its deterministic prediction (lines) for S ¼ L ¼ 100, N ¼ 1000 and

Lnuc ¼ 2. Due to the enhanced number of nucleation events, the stochastic wave encompasses far more structures

and moves more slowly. As a result, it does not quite reach the absorbing boundary.
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Non-monotonic yield curves for a combination of slow dimerization and
activation
So far, the two implementations of the ‘slow nucleation principle’ have been investigated separately.

Surprisingly, we observe counter-intuitive behavior in a mixed scenario in which both dimerization

and activation occur slowly (i.e., �<n, a<¥). Figure 5 shows that, depending on the ratio �=n, the

yield can become a non-monotonic function of a. In the regime where a is large, nucleation is dimer-

ization-limited; therefore activation is irrelevant and the system behaves as in the dimerization sce-

nario for a ! ¥. Upon decreasing a we then encounter a second regime, where activation and

dimerization jointly limit nucleation. The yield increases due to synergism between slow dimerization

and activation (see �=n dependence of ath, Equation 1), whilst the average number of active mono-

mers is still high and fluctuations are negligible. Finally, a stochastic yield catastrophe occurs if a is

further reduced and activation becomes the limiting step. This decline is caused by an increase in

nucleation events due to relative fluctuations in the availability of the different species (‘fluctuations

between species’). This contrasts the deterministic description where nucleation is always slower for

smaller activation rate. Depending on the ratio �=n, the ring size L and the particle number N, maxi-

mal yield is obtained either in the dimerization-limited (red curves, Figure 5), activation-limited (blue

curve, Figure 5b) or intermediate regime (green and orange curves, Figure 5).

Robustness of the results to model modifications
In our model, the reason for the stochastic yield catastrophe is that - due to fluctuations between

species - the effective nucleation rate is strongly enhanced. Hence, if binding to a larger structure is

temporarily impossible, activated monomers tend to initiate new structures, causing an excess of
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Figure 5. Yield for a combination of slow dimerization and activation. (a, b) Dependence of the yield of the fully

heterogeneous system on the activation rate a for N ¼ 100 and different values of the dimerization rate (colors/

symbols) for L ¼ 60 (a) and L ¼ 40 (b) (averaged over 1024 ensembles). For large activation rates the yield behaves

deterministically (lines). In contrast, for small activation rates, stochastic effects (blue shading) lead to a decrease in

yield. Depending on the parameters, the yield maximum is attained in either the deterministic, stochastic or

intermediate regime. (c) Table summarizing the qualitative behavior of the yield (poor/intermediate/perfect) for a

combination of dimerization and activation rates for both the deterministic and the stochastic limit. The columns

correspond to low and high values of the dimerization rate, as indicated by the marker in the corresponding

deterministic yield curve at the top of the column. Similarly, the rows correspond to low, intermediate and high

activation rates. Arrows and colors indicate where and for which curve this behavior can be observed in (a) and (b).

Deviations between the deterministic and stochastic limits are most prominent for low activation rates.
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structures that ultimately cannot be completed. Natural questions that arise are whether (i) relaxing

the constraint that polymers cannot bind other polymers or (ii) abandoning the assumption of a lin-

ear assembly path, will resolve the stochastic yield catastrophe. To answer these questions, we per-

formed stochastic simulations for extensions of our model system showing that the stochastic yield

catastrophe indeed persists. We start by considering the ring model from the previous section but

take polymer-polymer binding into account in addition to growth via monomer attachment (Fig-

ure 6). In detail, we assume that two structures of arbitrary size (and with combined length � L) bind

at rate n if they fit together, that is if the left (right) end of the first structure is periodically continued

by the right (left) end of the second one. Realistically, the rate of binding between two structures is

expected to decrease with the motility and thus the sizes of the structures. In order to assess the

effect of polymer-polymer binding, we focus on the worst case where the rate for binding is inde-

pendent of the size of both structures. If a stochastic yield catastrophe occurs for this choice of

parameters, we expect it to be even more pronounced in all the ‘intermediate cases’. Figure 6

shows the dependence of the yield on the activation rate in the polymer-polymer model. As before,

yield increases below a critical activation rate and then saturates at an imperfect value for small acti-

vation rates. Decreasing the number of particles per species, decreases this saturation value. Com-

pared to the original model, the stochastic yield catastrophe is mitigated but still significant: For

structures of size S ¼ L ¼ 100, yield saturates at around 0.87 for N ¼ 100 particles per species and at

around 0.33 for N ¼ 10 particles per species. We thus conclude that polymer-polymer binding

indeed alleviates the stochastic yield catastrophe but does not resolve it. Since binding only happens

between consecutive species, structures with overlapping parts intrinsically can not bind together

and depletion traps continue to occur. Taken together, also in the extended model, fluctuations in

the availability of the different species lead to an excess of intermediate-sized structures that get

kinetically trapped due to structural mismatches. Note that in the extreme case of N ¼ 1, incomplete

polymers can always combine into one final ring structure so that in this case the yield is always 1.

Analogously, for high activation rates yield is improved for N ¼ 10 compared to N � 50 (Figure 6b).

Kinetic trapping due to structural mismatches can occur in every (partially) irreversible heteroge-

neous assembly process with finite-sized target structure and limited resources. From our results, we

thus expect a stochastic yield catastrophe to be common to such systems. In order to further test

this hypothesis, we simulated another variant of our model where finite sized squares assemble via

monomer attachment from a pool of initially inactive particles, see Figure 7. In contrast to the
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Figure 6. Extended model including polymer-polymer binding. (a) In the extended model, structures not only

grow by monomer attachment but also by binding with another polymer (colored arrow). As before, binding only

happens between periodically consecutive species with rate n per binding site. So, the reaction rate for two

polymers is identical to the one for monomer-polymer binding, n. Furthermore, only polymers with combined

length � L can bind. All other processes and rules are the same as in the original model described in Figure 1. (b)

The yield of the extended model as obtained from stochastic simulations is shown in dependence of the activation

rate a for S ¼ L ¼ 100, � ¼ n ¼ 1, Lnuc ¼ 2 and different values of the number of particles per species, N (averaged

over 1024 ensembles). The qualitative behavior is the same as for the original model. In particular, yield saturates

(in the stochastic limit) at an imperfect value for slow activation rates. Note that for small particle numbers

polymer-polymer binding results in an increase of the minimal yield (here for large activation rates). This is due to

the fact that even in the case where a priori too many nucleation events happen, polymers can combine into final

structures.
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original model, the assembled structures are non-periodic and exhibit a non-linear assembly path

where structures can grow independently in two dimensions. While the ring model assumes a

sequential order of binding of the monomers, the square allows for a variety of distinct assembly

paths that all lead to the same final structure. Note that, because of the absence of periodicity, the

square model is only well defined for the completely heterogeneous case. Figure 7 depicts the

dependence of the yield on the activation rate for a square of size S ¼ 100. Also in this case, we find

that the yield saturates at an imperfect value for small activation rates. Hence, we showed that the

stochastic yield catastrophe is not resolved neither by accounting for polymer-polymer combination

nor by considering more general assembly processes with multiple parallel assembly paths. This

observation supports the general validity of our findings and indicates that stochastic yield catastro-

phes are a general phenomenon of (partially) irreversible and heterogeneous self-assembling sys-

tems that occur if particle number fluctuations are non-negligible.

Discussion
Our results show that different ways to slow down nucleation are indeed not equivalent, and that

the explicit implementation is crucial for assembly efficiency. Susceptibility to stochastic effects is

highly dependent on the specific scenario. Whereas systems for which dimerization limits nucleation

are robust against stochastic effects, stochastic yield catastrophes can occur in heterogeneous sys-

tems when resource supply limits nucleation. The occurrence of stochastic yield catastrophes is not

captured by the deterministic rate equations, for which the qualitative behavior of both scenarios is

the same. Therefore, a stochastic description of the self-assembly process, which includes fluctua-

tions in the availability of the different species, is required. The interplay between stochastic and

deterministic dynamics can lead to a plethora of interesting behaviors. For example, the combination

of slow activation and slow nucleation may result in a non-monotonic dependence of the yield on

the activation rate. While deterministically, yield is always improved by decreasing the activation

rate, stochastic fluctuations between species strongly suppress the yield for small activation rate by
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Figure 7. Assembly of squares of size
ffiffiffi
L

p
�

ffiffiffi
L

p
from L different particle species. (a) As in the ring models, there

are N monomers of each species in the system. All particles are initially in an inactive state (blue) and are activated

at the same per-capita rate a. Once active (green), species with neighboring position within the square (left/right,

up/down) can bind to each other. Structures grow by attachment of single monomers until the square is complete

(absorbing state). Depending on the number b of contacts between the monomer and the structure, the

corresponding rate is bn. For simplicity, all polymers (yellow) are stable (Lnuc ¼ 2) and we do not consider polymer-

polymer binding. (b) The yield of the square model as obtained from stochastic simulations is shown in

dependence of the activation rate a for S ¼ L ¼ 100, � ¼ n ¼ 1 and different values of the number of particles per

species, N (averaged over 256 ensembles). The qualitative behavior is the same as for the previous models:

Whereas the yield is poor for large activation rates, it strongly increases below a threshold value and saturates (in

the stochastic limit) at an imperfect value < 1 for small activation rates. The saturation value decreases with

decreasing number of particles in the system.
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effectively enhancing the nucleation speed. This observation clearly demonstrates that a determinis-

tically slow nucleation speed is not sufficient in order to obtain good yield in heterogeneous self-

assembly. For example, a slow activation step does not necessarily result in few nucleation events

although deterministically this behavior is expected. Thus, our results indicate that the slow nucle-

ation principle has to be interpreted in terms of the stochastic framework and have important impli-

cations for yield optimization.

We showed that demographic noise can cause stochastic yield catastrophes in heterogeneous

self-assembly. However, other types of noise, such as spatiotemporal fluctuations induced by diffu-

sion, are also expected to trigger stochastic yield catastrophes. Hence, our results have broad impli-

cations for complex biological and artificial systems, which typically exhibit various sources of noise.

We characterize conditions under which stochastic yield catastrophes occur, and demonstrate how

they can be mitigated. These insights could usefully inform the design of experiments to circumvent

yield catastrophes: In particular, while slow provision of constituents is a feasible strategy for experi-

ments, it is highly susceptible to stochastic effects. On the other hand, irrespective of its robustness

to stochastic effects, the experimental realization of the dimerization scenario relies on cooperative

or allosteric effects in binding, and may therefore require more sophisticated design of the constitu-

ents (Sacanna et al., 2010; Zeravcic et al., 2017). Our theoretical analysis shows that stochasticity

can be alleviated either by decreasing heterogeneity (presumably lowering realizable complexity) or

by increasing reversibility (potentially requiring fine-tuning of bond strengths and reducing the sta-

bility of the assembly product). Alternative approaches to control stochasticity include the promotion

of specific assembly paths (Murugan et al., 2015; Gartner, Graf and Frey, in preparation) and the

control of fluctuations (Graf, Gartner and Frey, in preparation). One possibility to test these ideas

and the ensuing control strategies could be via experiments based on DNA origami. Instead of

building homogeneous ring structures as in Wagenbauer et al. (2017), one would have to design

heterogeneous ring structures made from several different types of constituents with specified bind-

ing properties. By varying the opening angle of the ‘wedges’ (and thus the preferred number of

building blocks in the ring) and/or the number of constituents, both the target structure size L as

well as the heterogeneity of the target structure S could be controlled.

Moreover, the ideas presented in this manuscript are relevant for the understanding of intracellu-

lar self-assembly. In cells, provision of building blocks is typically a gradual process, as synthesis is

either inherently slow or an explicit activation step, such as phosphorylation, is required. In addition,

the constituents of the complex structures assembled in cells are usually present in small numbers

and subject to diffusion. Hence, stochastic yield catastrophes would be expected to have devastat-

ing consequences for self-assembly, unless the relevant cellular processes use elaborate control

mechanisms to circumvent stochastic effects. Further exploration of these control mechanisms

should enhance the understanding of self-assembly processes in cells and help improve synthesis of

complex nanostructures.

Materials and methods
All our simulation data was generated with either C++ or MATLAB. The source code is available at

the eLife website.

Here we show the derivation of Equation 1 in the main text, giving the threshold values for the

rate constants below which finite yield is obtained. The details can be found in Appendices 1–3.

Master equation and chemical rate equations
We start with the general Master equation and derive the chemical rate equations (deterministic/

mean-field equations) for the heterogeneous self-assembly process. We renounce to show the full

Master equation here but instead state the system that describes the evolution of the first moments.

To this end, we denote the random variable that describes the number of polymers of size ‘ and

species s in the system at time t by ns‘ðtÞ with 2 � ‘<L and 1 � s � S. The species of a polymer is

defined by the species of the respective monomer at its left end. Furthermore, ns
0
and ns

1
denote the

number of inactive and active monomers of species s, respectively, and nL the number of complete

rings. We signify the reaction rate for binding of a monomer to a polymer of size ‘ by n‘. a denotes

the activation rate and d‘ the decay rate of a polymer of size ‘. By h:::i we indicate (ensemble)
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averages. The system governing the evolution of the first moments (the averages) of the fns‘g is then

given by:

d

dt
hns

0
i ¼�a hns

0
i ; (2a)

d

dt
hns

1
i ¼ ahns

0
i�
XL�1

‘¼1

n‘ hns
1
nsþ1

‘ iþ hns
1
ns�‘
‘ i

� �
þ
XLnuc�1

‘¼2

Xk¼s

k¼sþ1�‘

d‘hnk‘i ; (2b)

d

dt
hns

2
i ¼ n1 hns1 nsþ1

1
i� n2 hns2 nsþ2

1
i� n2 hns2 ns�1

1
i� d2 hns2i1f2<Lnucg ; (2c)

d

dt
hns‘i ¼ n‘�1 hns‘�1

n‘þs�1

1
iþ n‘�1 hnsþ1

‘�1
ns
1
i� n‘ hns‘ nsþ‘

1
i� n‘ hns‘ ns�1

1
i� dhns‘i1f‘<Lnucg ; (2d)

d

dt
hnsLi ¼ nL�1 hnsL�1

nLþs�1

1
iþ nL�1 hnsþ1

L�1
ns
1
i : (2e)

The different terms of this equation are illustrated graphically in Figure 8. The first equation

describes loss of inactive particles due to activation at rate a. Equation 2b gives the temporal

change of the number of active monomers that is governed by the following processes: activation of

inactive monomers at rate a, binding of active monomers to the left or to the right end of an existing

structure of size ‘ at rate n‘, and decay of below-critical polymers of size ‘ into monomers at rate d‘

(disassembly). Equations 2c and 2d describe the dynamics of dimers and larger polymers of size

3� ‘<L, respectively. The terms account for reactions of polymers with active monomers (polymeri-

zation) as well as decay in the case of below-critical polymers (disassembly). The indicator function

1fx<Lnucg equals 1 if the condition x<Lnuc is satisfied and 0 otherwise. Note that a polymer of size ‘� 3

can grow by attaching a monomer to its left or to its right end whereas the formation of a dimer of a

specific species is only possible via one reaction pathway (dimerization reaction). Finally, polymers of

length L – the complete ring structures – form an absorbing state and, therefore, include only the

respective gain terms (cf Equation 2e).

We simulated the Master equation underlying Equation 2 stochastically using Gillespie’s algo-

rithm. For the following deterministic analysis, we neglect correlations between particle numbers

fns‘g, which is valid assumption for large particle numbers. Then the two-point correlator can be

approximated as the product of the corresponding mean values (mean-field approximation)

hnsinkj i ¼ hnsi ihnkj i 8s;k (3)

Furthermore, for the expectation values it must hold

hns‘i ¼ hn1‘ i 8s (4)

because all species have equivalent properties (there is no distinct species) and hence the system is

invariant under relabelling of the upper index. By

c‘ :¼
hns‘i
V

; (5)

we denote the concentration of any monomer or polymer species of size ‘, where V is the reaction

volume. Due to the symmetry formulated in Equation 4, the heterogeneous assembly process

decouples into a set of S identical and independent homogeneous assembly processes in the deter-

ministic limit. The corresponding homogeneous system then is described by the following set of

equations that is obtained by applying (Equation 3, Equation 4) and (Equation 5) to (Equation 2)

d

dt
c0 ¼�ac0 ; (6a)
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d

dt
c1 ¼ ac0 � 2c1

XL�1

‘¼1

n‘ c‘ þ
XLnuc�1

‘¼2

ld‘ c‘ ; (6b)

d

dt
c2 ¼ n1 c

2

1
� 2n2 c1 c2 � d2 c2 1f2<Lnucg ; (6c)

d

dt
c‘ ¼ 2n‘�1 c1 c‘�1 � 2n‘ c1 c‘� d‘ c‘ 1f‘<Lnucg ; for3� ‘<L ; (6d)

d

dt
cL ¼ 2nL�1 c1 cL�1 : (6e)

Figure 8. Graphical illustration of Equations 2 and 6. (a) Visualization of the gain and loss terms in the dynamics of the active monomers in

Equation 2b. Gain of active monomers is due to activation of inactive monomers as well as decay of unstable polymers. Loss of active monomers is

due to dimerization and attachment of monomers to larger polymers. (b) Visualization of the transitions between clusters of different sizes (without

distinction of species). The first and second box represent the inactive and active monomers in the system, the subsequent boxes each represent the

ensemble of polymers of a certain size. The arrows between the boxes show possible reactions and transitions with the reaction rates indicated

accordingly. Each arrow starting from or leading to a box is associated with a corresponding loss or gain term on the right hand side of Equation 2 and

Equation 6.
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The rate constants n‘ in Equations 6 and 2 differ by a factor of V . For convenience, we use however

the same symbol in both cases. The rate constants n‘ in Equation 6 can be interpreted in the usual

units ½ liter
molsec

�. Due to the symmetry, the yield, which is given by the quotient of the number of

completely assembled rings and the maximum number of complete rings, becomes independent of

the number of species S

yieldðtÞ ¼ ScLðtÞV
SNL�1

¼ cLðtÞVL
N

: (7)

Hence, it is enough to study the dynamics of the homogeneous system, Equation 6, to identify the

condition under which non zero yield is obtained.

Effective description by an advection-diffusion equation
The dynamical properties of the evolution of the polymer-size distribution become evident if the set

of ODEs, Equation 6, is rewritten as a partial differential equation. This approach was previously

described in the context of virus capsid assembly (Zlotnick et al., 1999; Morozov et al., 2009). For

simplicity, we restrict ourselves to the case Lnuc ¼ 2 and let n1 ¼� and n‘�2 ¼ n. Then, for the polymers

with ‘>2 we have

qtc‘ ¼ 2nc1 ½c‘�1 � c‘� : (8)

As a next step, we approximate the index ‘2 f2;3; . . . ;Lg indicating the length of the polymer as a

continuous variable x2 ½2;L� and define cðx¼‘Þ :¼ c‘. By A :¼ c1 we denote the concentration of active

monomers in the following to emphasize their special role. Formally expanding the right-hand side

of Equation 8 in a Taylor series up to second order

cð‘� 1Þ ¼ cð‘Þ� qxcð‘Þþ
1

2
q
2

xcð‘Þ ; (9)

one arrives at the advection-diffusion equation with both advection and diffusion coefficients

depending on the concentration of active monomers AðtÞ

qtcðxÞ ¼�2nAqxcðxÞþ nAq2xcðxÞ : (10)

Equation 10 can be written in the form of a continuity equation qtcðxÞ¼ � qxJðxÞ with flux

J¼2nA c� nA qxc. The flux at the left boundary x¼2 equals the influx of polymers due to dimerization

of free monomers Jð2; tÞ¼�A2. This enforces a Robin boundary condition at x¼2

2nA cð2; tÞ� nA qxcð2; tÞ ¼ �A2 : (11)

At x¼L we set an absorbing boundary cðL; tÞ¼0 so that completed structures are removed from the

system. The time evolution of the concentration of active monomers is given by

qtA¼ aCe�at � 2�A2 � 2nA

ZL

2

cðx; tÞdx : (12)

The terms on the right-hand side account for activation of inactive particles, dimerization, and bind-

ing of active particles to polymers (polymerization).

Qualitatively, Equation 10 describes a profile that emerges at x¼ 2 from the boundary condition

Equation 11, moves to the right with time-dependent velocity 2nAðtÞ due to the advection term,

and broadens with a time-dependent diffusion coefficient nAðtÞ. In Appendices 2–3 we show how

the full solution of Equations 10 and 11 can be found assuming knowledge of AðtÞ. Here, we focus

only on the derivation of the threshold activation rate and threshold dimerization rate that mark the

onset of non-zero yield. Yield production starts as soon as the density wave reaches the absorbing

boundary at x¼ L. Therefore, finite yield is obtained if the sum of the advectively travelled distance

dadv and the diffusively travelled distance ddiff exceeds the system size L� 2

dadvþ ddiff � L� 2 : (13)
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According to Equation 10, dadv ¼ 2n
R¥

0

AðtÞdt and ddiff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n
R¥

0

AðtÞdt
s

, giving as condition for the onset

of finite yield

2n

Z¥

0

AðtÞdt¼!
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4ðL� 2Þ
p

� 1

� �2

»L�
ffiffiffi

L
p

; (14)

where the last approximation is valid for large L.

In order to obtain
R
¥

0
AðtÞdt we derive an effective two-component system that governs the evolu-

tion of AðtÞ. To this end, we denote the total number of polymers in Equation 12 by

BðtÞ :¼
R
¥

2
cðx; tÞ dx (as long as yield is zero the upper boundary is irrelevant and we can consider

L ¼ ¥). Equation 12 then reads

d

dt
A¼ aCe�at � 2�A2 � 2nA B ;

(15)

and the dynamics of B is determined from the boundary condition, Equation 11

d

dt
B¼

Z¥

2

qtcðx; tÞdx¼
Z¥

2

�qxJðx; tÞdx¼�Jð¥; tÞ
|fflfflffl{zfflfflffl}

¼0

þJð2; tÞ ¼ �AðtÞ2: (16)

Measuring A and B in units of the initial monomer concentration C and time in units of ðnCÞ�1 the

equations are rewritten in dimensionless units as

d

dt
A¼ !e�!t � 2hA2� 2AB; (17a)

d

dt
B¼ hA2; (17b)

where !¼ a
nC

and h¼ �
n
. Equation 17 describes a closed two-component system for the concentra-

tion of active monomers A and the total concentration of polymers B. It describes the dynamics

exactly as long as yield is zero. In order to evaluate the condition (14) we need to determine the inte-

gral over AðtÞ as a function of ! and h

Z¥

0

A!;hðtÞdt :¼ gð!;hÞ : (18)

To that end, we proceed by looking at both scenarios separately. The numerical analysis, confirming

our analytic results, is given in Appendix 3.

Dimerization scenario
The activation rate in the dimerization scenario is a!¥, and instead of the term !e�!t in dA=dt, we

set the initial condition Að0Þ ¼ 1 (and Bð0Þ ¼ 0). Furthermore, h ¼ �=n � 1 and we can neglect the

term proportional to h in dA=dt. As a result,

dA

dB
¼� 2B

hA
:

Solving this equation for A as a function of B using the initial condition AðB¼ 0Þ ¼ 1, the totally trav-

elled distance of the wave is determined to be

2gð!;hÞ ¼ 2
p

2
ffiffiffi
2

p 1
ffiffiffi
h

p ; (19)

where for the evaluation of the integral we used the substitution hA2dt¼ dB.
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Activation scenario
In the activation scenario, yield sets in only if the activation rate and thus the effective nucleation

rate is slow. As a result, in addition to ! � 1, we can again neglect the term proportional to h in

dA=dt. This time, however, we have to keep the term !e�!t. As a next step, we assume that dA=dt is

much smaller than the remaining terms on the right-hand side, !e�!t and �2AB. This assumption

might seem crude at first sight but is justified a posteriori by the solution of the equation (see

Appendix 3). Hence, we get the algebraic equation AðtÞ ¼ !e�!t=ð2BðtÞÞ. Using it to solve

dB=dt ¼ hA2 for B, and then to determine A, the totally travelled distance of the wave is deduced as

2gð!;hÞ ¼ 2
3
2=3

ffiffiffiffi
p

p
Gð2=3Þ

6Gð7=6Þ ð!hÞ�1=3: (20)

Taken together, we therefore obtain two conditions out of which one must be fulfilled in order to

obtain finite yield

2aðh!Þ�1

3 � L�
ffiffiffi

L
p

) a<ath :¼ Pa

n

�

nC

ðL�
ffiffiffi
L

p
Þ3

(21)

or 2bh�1

2 � L�
ffiffiffi

L
p

) �<�th :¼ P�
n

ðL�
ffiffiffi
L

p
Þ2

; (22)

where a and b are numerical factors, and Pa¼8a3 »5:77 and P�¼4b2 »4:93. This verifies Equation 1 in

the main text.
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Appendix 1

Chemical reaction equations and the equivalence of
models with different numbers of species
In this section we derive the chemical rate equations (deterministic equations) for the self-

assembly process as described in the main text. Furthermore, we show that for general S in

the deterministic limit the model is equivalent to a set of S independent assembly processes

with only one species.

Homogeneous structures
First, we consider the homogeneous model (S¼ 1). By c‘ðtÞ we denote the concentration of

complexes of length ‘ (‘ � 2) at time t, c1ðtÞ is the concentration of active monomers and c0ðtÞ
the concentration of inactive monomers at time t. In the following we will usually skip the time

argument for better readability. We denote the reaction rate for binding of a monomer to a

polymer of size ‘ by n‘. The model from the main text is recovered by setting n‘ :¼ �‘ if ‘<Lnuc,

and n‘ :¼ n otherwise. The ensuing set of ordinary differential equations then reads:

d

dt
c0 ¼�ac0 ; (A1a)

d

dt
c1 ¼ ac0 � 2c1

XL�1

‘¼1

n‘ c‘þ
XLnuc�1

‘¼2

ld‘ c‘ ; (A1b)

d

dt
c2 ¼ n1 c

2

1
� 2n2 c1 c2 � d2 c2 1f2<Lnucg ; (A1c)

d

dt
c‘ ¼ 2n‘�1 c1 c‘�1� 2n‘ c1 c‘ � d‘ c‘ 1f‘<Lnucg ; for3� ‘<L ; (A1d)

d

dt
cL ¼ 2nL�1 c1 cL�1 : (A1e)

The indicator function 1fx<Lnucg equals 1 if the condition x<Lnuc is satisfied and 0 otherwise. The

first equation describes loss of inactive particles due to activation at rate a. It is uncoupled

from the remainder of the equations and is solved by c0ðtÞ¼Ce�at, with C denoting the initial

concentration of inactive monomers. The temporal change of the active monomers is

governed by the following processes (Equation A1b): activation of inactive monomers at rate

a, binding of active monomers to existing structures at rate n‘ (polymerization), and decay of

below-critical polymers into monomers at rate d‘ (disassembly). All binding rates appear with a

factor of 2 because a monomer can attach to a polymer on its left or on its right end.

Note that there is a subtlety with the dimerization term 2 n1 c
2

1
in Equation A1b: the

dimerization term as well bears a factor of 2 because two identical monomers A and B can

form a dimer in two possible ways, either as AB or BA. Additionally, there is a stoichiometric

factor of 2 for the monomers in this reaction. However, one factor of 2 is cancelled again

because, assuming there are n monomers, the number of ordered pairs of monomers that

describe possible reaction partners is 1

2
nðn� 1Þ» n2=2 (if n is large) rather than n2 (the number

of reaction partners when two different species react). This leaves us with a single factor of 2

like for all the other binding reactions.

Equations A1c and A1d describe the dynamics of dimers and larger polymers of size

3 � ‘<L, respectively. The terms account for reactions of polymers with active monomers

(polymerization) as well as decay in the case of below-critical polymers (disassembly). The

dimerization term in the equation for qtc2 lacks the factor of 2 because the stoichiometric
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factor is missing for the dimers as compared with the dimerization term for the monomers in

the line above. Finally, polymers of length L – the complete ring structures – form an

absorbing state and therefore only include a reactive gain term (Equation A1e).

Heterogeneous structures
Next we consider systems with more than one particle species (S>1). The heterogeneous

system can be described by dynamical equations equivalent to the homogeneous system. We

show this starting from a full description that distinguishes both monomers and polymers into

a set of different species 1; . . . ; S. The species of a polymer is defined by the species of the

respective monomer at its left end. As polymers assemble in consecutive order of species, a

polymer is uniquely determined by its length and species (i.e. species of leftmost monomer). In

that sense, cs‘ with 0 � ‘<L and 1 � s � S denotes the concentration of a polymer of length ‘

and species s (cs
0
and cs

1
again denote inactive and active monomers of species s, respectively).

For example, c5
4
denotes the concentration of polymers [5678] if S � 8, or of polymers [5612] if

S ¼ 6. Upper indices are always assumed to be taken modulo S whenever they lie outside the

range ½1; S�. Therefore, the dynamics of the concentrations cs‘ with 3 � ‘<L is given by

d

dt
cs‘ ¼ n‘�1 c

s
‘�1

c‘þs�1

1
þ n‘�1 c

sþ1

‘�1
cs
1
� n‘ c

s
‘ c

sþ‘
1

� n‘ c
s
‘ c

s�1

1
� dcs‘ 1f‘<Lnucg : (A2)

The terms on the right-hand side account for the influx due to binding of the respective

polymers of length ‘� 1 with a monomer either on the right or on the left (first and second

term), and for the outflux due to reactions of a polymer of length ‘ and species s with a

monomer on the right or on the left (third and fourth term), as well as for decay into

monomers for ‘<Lnuc (last term). For the dynamics of the dimers, however, there is only one

gain term arising from dimerization:

d

dt
cs
2
¼ n1 c

s
1
csþ1

1
� n2 c

s
2
csþ2

1
� n2 c

s
2
cs�1

1
� d2 c

s
2
1f2<Lnucg : (A3)

Equivalently, for the active monomers we find:

d

dt
cs
1
¼ aCe�at � cs

1

XL�1

‘¼1

n‘ csþ1

‘ þ cs�‘
‘

� �
þ
XLnuc�1

‘¼2

Xk¼s

k¼sþ1�‘

d‘c
k
‘ :

Now we exploit the symmetry of the system with respect to the species index, that is, the

upper index in fcs‘g: Since all species in the system are equivalent, the dynamic equations are

invariant under relabelling of the upper indices. Consequently, it must hold that:

cs‘ðtÞ ¼ ck‘ðtÞ; foranys;k� Satanytimet: (A5)

In other words, the upper index is irrelevant and can also be discarded. The variable c‘ then

denotes the concentration of any one polymer species of length ‘. Taking advantage of this

symmetry for the equations of the heterogeneous system, (Equation A2, Equation A3 and

Equation A4), and collecting equal terms leads to a set of equations fully identical to those for

the homogeneous system (Equation A1). We show the equivalence to the homogeneous

model exemplarily for the dynamics of the polymers with size ‘� 3 in Equation A2. Applying

cs‘ðtÞ ¼ c‘ðtÞ to Equation A2 yields for the dynamics of the concentration of an arbitrary

polymer species of size ‘:

d

dt
c‘ ¼ n‘�1 c‘�1 c1þ n‘�1 c‘�1 c1 � n‘ c‘ c1 � n‘ c‘ c1� dc‘ 1f‘<Lnucg :

¼ 2n‘�1 c‘�1 c1� 2n‘ c‘ c1 � dc‘ 1f‘<Lnucg;

which is identical to the respective dynamic Equation A1d for the homogeneous model. The

other equations for the heterogeneous system reduce to those for the homogeneous system

in an analogous manner.
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Summarizing, we have shown that the (deterministic) heterogeneous assembly process

decouples into a set of S identical and independent homogeneous processes. In particular,

yield, which is given by the quotient of the number of completely assembled rings and the

maximal possible number of complete rings, becomes independent of S:

yieldðtÞ ¼ ScLðtÞ
SNL�1

¼ cLðtÞL
N

: (A6)
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Appendix 2

Effective description of the evolution of the polymer size
distribution as an advection-diffusion equation
The dynamical properties of the evolution of the polymer size distribution become evident if

the set of ODEs, Equation 1, is rewritten as a partial differential equation. This approach was

previously described in the context of virus capsid assembly (Morozov et al., 2009;

Zlotnick et al., 1999; Endres and Zlotnick, 2002) but we will restate the essential steps here

for the convenience of the reader. To this end we interpret the length index of the polymer

‘ 2 f2; 3; . . . ; Lg as a continuous variable that we rename x 2 ½2; L�. With such a continuous

description in view we write cðx¼ ‘Þ :¼ c‘ to denote the concentration of polymers of size ‘.

Since the active monomers play a special role, we denote their concentration in the

following by A. For simplicity we restrict our discussion to the case Lnuc ¼ 2 and let n1 ¼� and

n‘�2 ¼ n. Generalizations to Lnuc>2 can be done in a similar way. Then, for the polymers with

‘ � 3 we have:

qtcð‘Þ ¼ 2nA ½cð‘� 1Þ� cð‘Þ� : (A7)

Formally, expanding the right-hand side in a Taylor series up to second order

cð‘� 1Þ ¼ cð‘Þ� qxcð‘Þþ
1

2
q
2

xcð‘Þ ; (A8)

we arrive at an advection-diffusion equation with both advection and diffusion coefficients

depending on the concentration of active monomers AðtÞ,

qtcðxÞ ¼�2nAqxcðxÞþ nAq2xcðxÞ : (A9)

Equation A9 can be written in the form of a continuity equation qtcðxÞ¼ � qxJðxÞ with flux

J¼2nA c� nA qxc. The flux at the left boundary, x¼2, equals the influx of polymers due to

dimerization of free monomers, Jð2; tÞ¼�A2. This enforces a Robin boundary condition at x¼2,

2nA cð2; tÞ� nA qxcð2; tÞ ¼ �A2 : (A10)

At x¼L, we have an absorbing boundary cðL; tÞ¼0 so that completed structures are removed

from the system. Furthermore, the time evolution of the concentration of active particles is

given by

qtA¼ aCe�at � 2�A2 � 2nA

ZL

2

cðx; tÞdx : (A11)

The terms on the right-hand side account for activation of inactive particles, dimerization, and

binding of active particles to polymers (polymerization).

Qualitatively, Equation A9 describes a profile that emerges at x¼ 2 from the boundary

condition, Equation A10, moves to the right with time dependent velocity 2nAðtÞ due to the

advection term, and broadens with a time-dependent diffusion coefficient nAðtÞ. The
concentration of active particles A determines both the influx of dimers at x¼ 2, as well as the

speed and diffusion of the wave profile.

Next, we derive an expression that solves Equation A9, assuming that we know AðtÞ. We

start by solving Equation A9 at the left boundary cð2; tÞ, and then translate the resulting

expression to obtain a solution for cðx; tÞ. To obtain cð2; tÞ in dependence of aðtÞ we can solve
d
dt
cð2; tÞ ¼ �A2 � 2nAcð2; tÞ (see Equation A1c) by ’variation of the constants’ as
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cð2; tÞ ¼
Z t

0

�Að~tÞ2 exp �2

Z t

~t

nAðt0Þdt0
2

4

3

5d~t : (A12)

With help of this expression we find cðx; tÞ: Given cð2; tÞ, the advective part of Equation A9,

qt~cðxÞ ¼�2nAqx~cðxÞ : (A13)

is solved by

cadvecðx; tÞ ¼ cð2;tðx; tÞÞ : (A14)

Here, tðx; tÞ denotes the time when a particle now at position x and time t was at x¼ 2. In other

words, a particle at time t and position x has entered the system at x¼ 2 at time tðx; tÞ. This
ansatz solves the PDE (Equation A13) if and only if tðx; tÞ satisfies

tðx; tÞ ¼ ~A�1 ~AðtÞ� x� 2

2n

� �

(A15)

with ~A being an arbitrary integral of A such that qt~AðtÞ ¼ AðtÞ and ~A�1 denoting its inverse.

More easily, we find this form of t by requiring that the integral over the velocity from time t

to t equals the travelled distance x� 2:

Z t

t

2n Aðt0Þdt0 ¼ x� 2 : (A16)

To include the diffusive contribution in Equation A13, we use the diffusion kernel,

kðx;y; tÞ ¼ 4p

Z t

tðy;tÞ
DðtÞ

 !�1=2

exp
�x2

4
R t

tðy;tÞDðtÞ

 !

; (A17)

with the time dependent diffusion constant DðtÞ ¼ nAðtÞ. The kernel kðx;y; tÞ accounts for the
mass that has been diffusively transported from y over a distance of x. Because the mass has

entered the system at x¼ 2 at time tðy; tÞ, it diffused for the time t� tðy; tÞ. The complete

expression for cðx; tÞ is then obtained as the convolution of cadvecðx; tÞ (Equation A14), that is

obtained from Equation A12 and Equation A15, and the diffusion kernel kðx;y; tÞ
(Equation A17):

cðx; tÞ ¼
Z

cadvecðs; tÞkðx� s; s; tÞds¼
Z

cð2;tðs; tÞÞkðx� s; s; tÞds : (A18)

Interpreting the terms in the equations and the general form of the solution, we are able to

understand the qualitative behavior of the system. If both the activation and the dimerization

rate are large, the system produces zero yield: both advection and diffusion are driven by the

concentration of active monomers A. If activation is fast, the concentration of active monomers

A will become large initially since activation is faster than the reaction dynamics. Consequently,

provided �~n, dimerization dominates over binding because it depends quadratically on A,

see Equation A11. The reservoir of free particles then depletes quickly and cannot sustain the

motion of the wave for long enough to reach the absorbing boundary, resulting in a very low

yield. Only if either the activation rate is low enough or if �� n, the motion of the wave can

be sustained until it reaches the absorbing boundary.
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Appendix 3

Threshold values for the activation and dimerization rate
Based on the analysis from the previous section, we will now determine the threshold

activation rate and threshold dimerization rate which mark the onset of non-zero yield. Yield

production starts as soon as the density wave reaches the absorbing boundary at x¼ L.

Therefore, finite yield is obtained if and only if the sum of the advectively travelled distance

dadv and the diffusively travelled distance ddiff exceeds the system size L� 2:

dadv þ ddiff � L� 2 : (A19)

The condition for the onset of non-zero yield is obtained by assuming equality in this relation.

The advectively travelled distance is obtained from Equation A16 by setting the borders of

the integral over the velocity to t¼ 0 and t¼¥:

dadv ¼
Z¥

0

2nAðt0Þdt0: (A20)

The diffusively travelled distance is approximately given by the standard deviation of the

Gaussian diffusion kernel, Equation A17, again with t¼ 0 and t¼¥,

ddiff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n

Z¥

0

AðtÞdt

v
u
u
u
t : (A21)

Taken together, we obtain a condition for the onset of finite yield:

2n

Z¥

0

AðtÞdtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n

Z¥

0

AðtÞdt

v
u
u
u
t ¼ L� 2 : (A22)

Substituting y¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2n
R
A

p

and requiring that y is positive, we solve the quadratic equation and

find that Equation A22 is equivalent to

2n

Z¥

0

AðtÞdt¼ y2 ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4ðL� 2Þ
p

� 1

� �2

»L�
ffiffiffi

L
p

; (A23)

where the last approximation is valid for large L.

We determine the threshold values for the activation rate a and the dimerization rate � by

finding solutions of the dynamical equation for the active particles AðtÞ, Equation A11, such

that the condition, Equation A23, is fulfilled. Thus, we start by deriving the dependence of
R
¥

0
AðtÞdt on a and �.

The concentration cðx; tÞ appears in Equation A11 only in terms of an integral
R L

2
cðx; tÞ dx,

counting the total number of polymers in the system. As long as yield is zero there is no

outflux of polymers at the absorbing boundary x¼ L and the total number of polymers in the

system only increases due to the influx at the left boundary x¼ 2. As long as yield is zero we

can therefore equivalently consider the limit L ! ¥. We denote the total number of polymers

in Equation A11 by BðtÞ :¼
R
cðx; tÞ dx for which the dynamics is determined from the boundary

condition, Equation A10:

d

dt
B¼

Z¥

2

qtcðx; tÞdx¼
Z¥

2

�qxJðx; tÞdx¼�Jð¥; tÞ
|fflfflffl{zfflfflffl}

¼0

þJð2; tÞ ¼ �AðtÞ2: (A24)

Hence, as long as yield is zero, the total number of polymers increases with the rate of the
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dimerization events. The system then simplifies to a set of two coupled ordinary differential

equations for A and B:

d

dt
A¼ aCe�at � 2�A2 � 2nAB (A25a)

d

dt
B¼ �A2: (A25b)

The dynamics of A and B is equivalent to a two-state activator-inhibitor system, where A

dimerizes into B at rate �, and B degrades (inhibits) A at rate 2n. Note that Equation A25

describes the exact dynamics of the active monomers A and total number of polymers B in the

deterministic system as long as yield is zero. The system has therefore been greatly reduced

from originally SN coupled ODEs to now only two coupled ODEs.

For the further analysis it is useful to non-dimensionalize Equation A25 by measuring A and

B in units of the initial concentration of inactive monomers C and time in units of ðnCÞ�1:

d

dt
A¼ !e�!t � 2hA2 � 2AB; (A26a)

d

dt
B¼ hA2; (A26b)

with the remaining dimensionless parameters !¼ a
nC

and h¼ �
n
. We are interested in the

integral over AðtÞ as a function of ! and h,

Z¥

0

A!;hðtÞdt :¼ gð!;hÞ ; (A27)

which relates to the totally travelled distance of the wave. Note that, in case of zero yield,

2gð!;hÞ is the total advectively travelled distance of the wave (cf. Equation A20) and the

square of the diffusively travelled distance (cf. Equation A21).

Analysis of the dimerization scenario
The dimerization scenario is characterized by fast activation a � Cn and slow dimerization

� � n. For the dimensionless parameters these assumptions translate to h � 1 and h � !.

Because for small h � 1 nucleation is much slower than growth we neglect the dimerization

term in Equation A26a against the growth term. Furthermore, because h � ! activation

happens on a fast time scale compared with nucleation and we may therefore integrate out

the fast time scale assuming that all particles are activated instantaneously at the beginning.

The system Equation A26 then reduces to

d

dt
A¼�2AB; (A28a)

d

dt
B¼ hA2; (A28b)

with the initial condition Að0Þ ¼ 1 and Bð0Þ ¼ 0. We divide the first equation by the second one

(formally applying the chain rule and the inverse function theorem) to obtain a single equation

for the dynamics of AðBÞ:

dA

dB
¼� 2

h

B

A
; (A29)

where AðB¼0Þ ¼ 1. This first order ODE can be solved by separation of variables and

subsequent integration, yielding
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AðBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2

h
B2

s

: (A30)

Because the number of active monomers AðtÞ must vanish for t!¥, the final value of B is

B¥ :¼ Bðt¼¥Þ ¼
ffiffiffi
h

2

r

: (A31)

Thereby, we calculate the function gðhÞ via variable substitution dt¼ dB
hA2:

gðhÞ ¼
Z¥

0

AðtÞdt¼
ZB¥

0

AðBÞ dB

hAðBÞ2
¼ 1

h

ZB¥

0

dB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2

h
B2

q ¼ p

2
ffiffiffi
2

p h�1

2 : (A32)

So, the dependence of the travelled distance of the wave on h obeys a power law with

exponent � 1

2
, confirming the previous result (Morozov et al., 2009). For the coefficient we

find p

2
ffiffi
2

p »1:1107.

Additionally, we can determine the time dependent solutions AðtÞ and BðtÞ. Using the

solution for AðBÞ from Equation A30 in Equation A28b we obtain BðtÞ as

BðtÞ ¼
ffiffiffi
h

2

r

tanh
ffiffiffiffiffiffi

2h
p

t
� �

: (A33)

We use this expression for BðtÞ in Equation A28a to obtain AðtÞ. The resulting ODEs can again

be solved by separation of variables as

AðtÞ ¼ 1

cosh
ffiffiffiffiffiffi
2h

p
tð Þ : (A34)

Analysis of the activation scenario
In the activation scenario, a � Cn, such that ! � 1 and ! � h. As we know already that

decreasing ! will slow down nucleation relative to growth we can again neglect the

dimerization term in Equation A26a. In contrast to the dimerization scenario, however, we

have to keep the activation term. Transforming time via t :¼ 1� e�!t such that t 2 ½0; 1� and
writing aðtÞ ¼ að1� e�!tÞ :¼ AðtÞ and bðtÞ ¼ bð1� e�!tÞ :¼ BðtÞ the system in Equation A26

becomes:

d

dt
a¼ 1� 2

!ð1� tÞab ; (A35a)

d

dt
b¼ h

!ð1� tÞa
2 ; (A35b)

with the initial condition að0Þ ¼ bð0Þ ¼ 0. The function gð!;hÞ transforms as

gð!;hÞ ¼
Z¥

0

AðtÞdt¼ 1

!

Z1

0

aðtÞ
1� t

dt: (A36)

In the following we derive the asymptotic solution for aðtÞ in the limit of small ! in order to

evaluate the integral in Equation A36. In the limit t! 1 (, t!¥) both aðtÞ and d
dt
aðtÞ will

become small whereas bðtÞ increases monotonically. The reaction term in Equation A35a is

furthermore weighted by a factor 1

! which will become large if !� 1. We therefore postulate

that for sufficiently large t the derivative d
dt
aðtÞ is much smaller than the two terms on the

right-hand side of Equation A35a and hence negligible. This assumption has to be justified a

Gartner et al. eLife 2020;9:e51020. DOI: https://doi.org/10.7554/eLife.51020 26 of 37

Research article Physics of Living Systems

https://doi.org/10.7554/eLife.51020


posteriori with the obtained solution. Neglecting the derivative term d
dt
a in (Equation A35a)

reduces the equation to an algebraic equation and we find

a¼ !ð1� tÞ
2b

: (A37)

Using this result in Equation A35b we can solve for b by separation of variables and

subsequent integration:

bðtÞ ¼ ð!hÞ13 � 3

4
t� 3

8
t
2

� �1

3

: (A38)

From Equation A37 we immediately obtain aðtÞ:

aðtÞ ¼ !
2

3

h
1

3

� 1� t

ð6t� 3t2Þ13
:¼ !

2

3

h
1

3

hðtÞ ; (A39)

where by hðtÞ we denote the part of the solution that depends only on t. Hence, we find that a

and hence also d
dt
a scale like ~!

2

3, and will thus become small if !� 1 and t is large enough.

Therefore the solution is consistent and justifies the approximation in which we neglected the

derivative term in the limit of small ! and sufficiently large t.

Note that consistency of the solution with the approximation is a sufficient criterion for the

validity of the approximation: We can solve the system for A and B in Equation A35 iteratively

by defining

d

dt
ai�1 ¼ 1� 2

!ð1� tÞaibi;

d

dt
bi ¼

h

!ð1� tÞa
2

i :

Assuming that for i!¥, ai and bi converge to the correct solutions aðtÞ and bðtÞ when

starting with a0 ¼ 0, we obtain a1 and b1 as given by Equation A39 and Equation A38

and can iteratively refine the approximation. The next iteration step then reads:
d
dt
a1 ¼ 1� 2

!ð1�tÞa2b2. As a1 ~!
2

3 we know that the left-hand side will be small and a1 and b1

solve the system if the left-hand side equals 0. Writing a2 ¼ a1 þ ~a2 and b2 ¼ b1 þ ~b2 this

gives:

d

dt
a1 ¼ 1� 2

!ð1� tÞ ða1þ ~a2Þðb1 þ ~b2Þ»
�2

!ð1� tÞða1
~b2 þ b1~a2Þ : (A40)

From dimensional analysis it follows that the correction terms ~a2 and ~b2 must scale like ~a2 ~!
4

3

and ~b2 ~! and are hence much smaller than the first order approximations a1 and b1. Higher

order corrections will give even smaller contributions showing that if d
dt
a1 � 1, a1 is indeed a

very good approximation.

In the limit t ! 0, however, the expression for aðtÞ in Equation A39 diverges and

consistency is violated. Hence, the obtained solution is valid only for sufficiently large t.

We fix some small �>0 such that the approximation can be assumed to be sufficiently

good if d
dt
a<�. Furthermore, we define t� such that d

dt
a<� for all t>t�. Using Equation A39

we can write this as d
dt
h<�h

1

3=!
2

3 for all t>t�, where the left-hand side, d
dt
h, depends only on

t. Hence, by decreasing ! we can make t� arbitrarily small: lim!!0 t� ¼ 0. In order to

calculate gð!;hÞ the integral in Equation A36 can be separated in a domain where the

approximation aðtÞ is accurate and a domain where the correct solution ~aðtÞ deviates

strongly from aðtÞ:
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gð!;hÞ ¼ 1

!

Z
t�

0

~aðtÞ
1� t

dtþ 1

!

Z1

t�

aðtÞ
1� t

dt: (A41)

We see from Equation A35a that d
dt
~a¼ 1 describes an upper bound to ~a showing that

~aðtÞ � t. Therefore we can bound the contribution of the first integral as
R
t�

0

~aðtÞ
1�t

dt�
R
t�

0

t

1�t�
dt¼ 1

2

t
2

�

1�t�
. Because this upper bound for the integral goes to 0 if ! and

hence t� become small the first integral will become negligible against the second one.

Asymptotically, we therefore only need to consider the second integral with the solution

for aðtÞ as given by Equation A39:

gð!;hÞ ¼ !hð Þ�1

3

R1

0

ð6t� 3t
2Þ�1

3dt¼ !hð Þ�1

3

R3

0

dz

6z
1

3

ffiffiffiffiffiffi
1�z

3

p ¼

¼ 3
2

3
ffiffiffi
p

p
Gð2

3
Þ

6 Gð7
6
Þ !hð Þ�1

3 »0:8969 � !hð Þ�1

3;

(A42)

where we used the substitution t¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z=3
p

and GðxÞ is the (Euler) Gamma function. So, in

the limit of small !, g scales with ! and h with identical exponent � 1

3
. This contrasts the

dimerization scenario where g as well as A and B depend only on h and are independent of !

(cf. Equation A32, A33 and A34).

Numerical analysis and the threshold values for the rate
constants
In order to confirm the results of the last two paragraphs and to see how gð!;hÞ behaves in
the intermediate regime where ! and h are of the same order of magnitude we also

investigate the function gð!;hÞ numerically. For that purpose we numerically integrate the

ODE-system for AðtÞ and BðtÞ in Equation A26 for different values of ! and h with a semi-

implicit method. Subsequently, we integrate the solution AðtÞ using an adaptive recursive

Simpson’s rule. Plotting g in dependence of ! for fixed h on a double-logarithmic scale reveals

a rather simple bipartite form of g, see Appendix 3—figure 1a:

gð!;hÞ ¼ g1ðhÞ!�1

3 !�1

g2ðhÞ !�1.

(
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Appendix 3—figure 1. Fit of gð!;hÞ on log-log scale. The function gð!;hÞ¼
R¥

0

A!;hðtÞdt

describes (half) the travelled distance of the profile of the polymer size distribution in

dependence of !¼ a
nC

and h¼ �
n
. Marker points show solutions for gð!;hÞ as obtained

numerically from integration of Equation A26. Red lines are linear fits on log-log scale. In (a)

we plot gð!;hÞ for fixed h (here exemplarily for h¼0:01) over 25 orders of magnitude in ! and

find a markedly bipartite behavior: For small ! the dependence on ! is perfectly matched by a
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power law with exponent � 1

3
and h-dependent coefficient g1ðhÞ, whereas for large ! it is a

constant g2ðhÞ. (b) Plotting g2ðhÞ¼gð!¼¥;hÞ in dependence of h reveals again strictly

bipartite behavior. Here, however, only the branch for small h� 1 is relevant. With the

coefficient g1ðhÞ that can be determined in a similar way this leads to the final form of gð!;hÞ
as given by Equation A46.

The transition between these two regimes is rather sharp so that g is best described in a

piecewise fashion

gð!;hÞ ¼max ðg1ðhÞ!�1

3;g2ðhÞÞ : (A44)

Next, we plot the coefficients g1ðhÞ and g2ðhÞ against h. Here we find that g1ðhÞ¼ah�1

3 with

a¼const»0:90 and g2ðhÞ is again bipartite with a sharp kink in between (Appendix 3—figure

1b):

g2ðhÞ ¼minðbh�1

2;b0h�0:85Þ ; (A45)

where b»1:11 and b0 »1:37. The transition between both regimes is at h»1:82. The second

regime is not relevant for self-assembly since it refers to both large ! and large h, hence the

travelled distance 2g is too small to give finite yield in this regime. Therefore, we discard the

second regime and obtain as final result

gð!;hÞ ¼max ðaðh!Þ�1

3;bh�1

2Þ; (A46)

with a»0:90 and b»1:11. This confirms perfectly the exponents as well as the coefficients found

in the last two paragraphs. It is, however, surprising that there is such a sharp transition

between both regimes, which allows to define gð!;hÞ in a piecewise fashion. This behavior

must be the result of a series of lower oder terms in gð!;hÞ which are unimportant in the limits

!� h and h� ! but cause the sharp transition when ! and h are of the same order of

magnitude.

Finally, we return to our original task of finding the threshold values of the activation and

dimerization rate for the onset of yield. Using our result for gð!;hÞ in Equation A23 we find as

necessary and sufficient condition to obtain finite yield in the deterministic system:

2max ðaðh!Þ�1

3;bh�1

2Þ � L�
ffiffiffi

L
p

: (A47)

Alternatively, we can state this result as two separate conditions out of which at least one must

be fulfilled to obtain finite yield:

2aðh!Þ�1

3 � L�
ffiffiffi

L
p

) a<ath :¼ Pa

n

�

nC

ðL�
ffiffiffi
L

p
Þ3

(A48)

or 2bh�1

2 � L�
ffiffiffi

L
p

) �<�th :¼ P�
n

ðL�
ffiffiffi
L

p
Þ2

(A49)

where Pa¼8a3 »5:77 and P�¼4b2 »4:93. This verifies Equation 1 in the main text.
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Appendix 4

Impact of the implementation of sub-nucleation reactions
In the main text we focused our discussion on irreversible binding Lnuc ¼ 2. In this section we

investigate the effect of different implementations of the sub-nucleation reactions.

In general, perfect yield is trivially achieved if the complete ring is the only stable structure.

However, yield can be maximal already for smaller nucleation sizes Lnuc depending on the

explicit decay rate d. In the deterministic limit without the dimerization and activation

mechanisms (�¼ n, a ! ¥ ) a rapid transition from zero yield to perfect yield occurs in

dependence of the critical nucleation size (see Appendix 4—figure 1). The threshold value in

this case is approximately half the ring size and is weakly affected by the decay rate d. In order

to obtain finite yield for small nucleation sizes, an extremely high decay rate would be

necessary. Hence, maximizing the yield solely by increasing the nucleation size is not very

feasible.
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Appendix 4—figure 1. Yield maximization due to increased nucleation size. Without activation

and dimerization mechanism ða ! ¥; �¼ nÞ the yield can still be optimized by increasing the

critical nucleation size Lnuc. However, a significant improvement is only achieved for critical

sizes larger than half the ring size. Above, a rapid transition to perfect yield takes place. Below

no effect is observed at all. Increasing d shifts the onset of yield to slightly smaller critical

nucleation sizes. Other parameters: L¼ 60, N ¼ 10000.

In our model, the subcritical reaction rates �i may take different values. Here, we want to

restrict our discussion to two scenarios. First, all rates have an identical value �i ¼� and

second, the rates increase linearly up to the super-nucleation reaction rate:

�i ¼�þ n � �ð Þ i�1

Lnuc�1
.

In the deterministic limit, both implementations show the same qualitative behavior as the

dimerization mechanism with Lnuc ¼ 2 in the main text (see Appendix 4—figure 2). The only

relevant aspect for the final yield is the extend to which nucleation is slowed down in total. In

the constant scenario all reaction steps contribute equally. As a results there is a strong

dependence on the number of such reaction steps, that is on the critical nucleation size. If

however, the reaction rates increase linearly with the size of the polymers, the dimerzation rate

dominates. Only in the case � � n finite yield is observed at all. In this limit the dimerization

rate is much smaller than the subsequent growth rates. The explicit form of the different �i is

not of major importance for the yield. The total slowdown of nucleation is the central feature.

Structure decay does not play any role for intermediate nucleation sizes.
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Appendix 4—figure 2. Yield for the dimerization mechanism (a ! ¥) with different nucleation

sizes (colors). (a) If all sub-nucleation growth rates are identical ð�i ¼�Þ increasing the nucleation

size increases the threshold value �th. The slow down of nucleation due to the individual sub-

nucleation steps in total determines the yield. (b) If the sub-nucleation growth rates increase

linearly �i ¼�þ ðn � �Þ i�1

Lnuc�1

� �

no dependence on the nucleation size is observed. The

dimerization rate �1 ¼� (which is the most limiting step) dominates entirely. Other parameters:

L¼ 60, N ¼ 10000, d¼ 1.

The last question we want to address is how the combination of activation and dimerization

mechanism and the corresponding non-monotonic behavior is affected by the nucleation size.

Again, we compare constant sub-nucleation growth with a linearly increasing growth rate (see

Appendix 4—figure 3). In the deterministic regime both implementations behave qualitatively

similar as the dimerization mechanism discussed in the main text. However, in both cases the

stochastic yield catastrophe is less pronounced. For the constant growth rates a saturation of

the maximal yield is observed for sufficiently low �. If the profile is linear this effect is weaker

as compared to the constant case and a dependency on the explicit value of � is still

observed. The saturation value is not reached for these reactions rates.
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Appendix 4—figure 3. Combined mechanisms for different nucleation sizes (symbols) and

dimerization rates (color). (a) If the sub-nucleation growth rates are identical ð�i ¼�Þ the
stochastic yield catastrophe is weakened but still has a drastic impact. The qualitative behavior

remains unchanged. (b) For a linearly increasing sub-nucleation growth rate

�i ¼�þ ðn � �Þ i�1

Lnuc�1

� �

in the deterministic regime no changes are observed at all. The effect

of the stochastic yield catastrophe is less pronounced. This improvement is mainly caused by

structure decay which mitigates stochastic fluctuations. However, a slight dependency of the

saturation value on the rate � is observed. Other parameters: L¼ 60, S¼ L, N¼ 100, d¼ 0:1.

Taking all our results for the sub-nucleation behavior together we draw the following

conclusions: First, structure decay by itself it not very efficient in order to maximize yield.

Second, the explicit choice of the sub-nucleation rates is of minor importance for the
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qualitative behavior. The system behaves similarly to the case Lnuc ¼ 2. Third, larger nucleation

sizes mitigate the stochastic yield catastrophe in general.
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Appendix 5

Time evolution of the yield in the activation and
dimerization scenario
In the main text we focus on the final yield, which represents the maximal yield that can be

obtained in the assembly reaction for t ! ¥. Here, we briefly discuss the temporal evolution of

the yield in the two scenarios. Appendix 5—figure 1 shows the yield as a function of time for

the dimerization scenario (blue) and the activation scenario (red) for the corresponding

parameters indicated in the plot. Drawn lines show the evolution of the yield in the stochastic

simulation whereas dashed lines represent its deterministic evolution obtained by integrating

the corresponding mean-field rate equations (only shown for the activation scenario). In both

scenarios, yield production sets in after a short lag time (Hagan and Elrad, 2010). The

emergence of a lag time can be understood in terms of the interpretation of the assembly

process as the progression of a travelling wave (see Sec. B). The travelling wave thereby

describes the polymer size distribution and the time that is needed for the wave to reach the

absorbing boundary equals the lag time for yield production observed in Appendix 5—figure

1. After the lag time, the yield increases very abruptly in the dimerization scenario and a bit

more continually in the activation scenario. Since monomers are provided gradually in the

activation scenario, the emerging wave is flatter and extends over a larger range (in polymer

size space) as compared to the dimerization scenario. Consequently, yield production is more

gradual in the activation scenario than in the dimerization scenario. For the same reason, the

dimerization scenario is generally ‘faster’ or more time efficient than the activation scenario.

For a detailed analysis of the time efficiency of these and other self-assembly scenarios we

refer the reader to our manuscript in preparation (Gartner, Graf and Frey, in preparation).

In all depicted situations, the yield increases monotonically with time. This is, of course,

generally true since the completed ring structures define an absorbing state in our system.

The final yield, which is indicated in the right bar, therefore represents the upper limit for the

yield that can be achieved in the assembly reaction. Appendix 5—figure 1 shows that the

temporal yield curves initially are rather steep and quickly reach a value that lies within 10% of

the final yield (‘quickly’ thereby refers to the respective time scale), before the curves flatten

and increase more slowly. This underlines that the final yield is a meaningful observable that

not only describes the upper limit for the yield but also approximates the typical yield of the

assembly reaction under appropriate time constraints that are not too restrictive (on the time

scale set by the respective lag time).
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Appendix 5—figure 1. Time evolution of the yield in the activation and dimerization scenario.

The time dependence of the yield is depicted for a dimerization scenario (blue) with � ¼
5� 10

�4 and N ¼ 100 and for two activation scenarios (red) with a ¼ 0:1 and N ¼ 2� 10
2 and

N ¼ 10
4, respectively, for target structures of size L ¼ 20. Drawn lines show the time evolution

of the stochastic systems while dashed lines describe the time evolution in the corresponding

deterministic systems (where the final yield may be higher in the activation scenario). In all

cases the yield increases monotonically with time. The final yield, that is indicated in the right

bar, represents the upper limit of the yield at any time. Yield production in the activation

scenario is generally more gradual than in the dimerization scenario. Therefore, the

dimerization scenario is, in general, more time efficient than the activation scenario.
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Appendix 6

Standard deviation of the yield
In the main text, the analysis focuses on the average yield. A priori it is, however, not apparent

that this average quantity is informative, in particular due to the strong effect of stochasticity

in the system. Here, we thus take a step forward to complement this picture by additionally

considering a simple measure for the fluctuations of the yield, its standard deviation.

Appendix 6—figure 1 is an extension of Figure 3a in the main text, showing the dependence

of the average yield and its sample standard deviation on the activation rate. Since yield is

always positive, the standard deviation of the yield has to be small if the average yield is close

to 0 (N ¼ 500 in Appendix 6—figure 1). The same holds true for average yield close to 1 as

the yield is bounded by one from above (N ¼ 5000 in Appendix 6—figure 1). For intermediate

values of the average yield, the standard deviation is highest but still small compared to the

average yield (N ¼ 1000 in Appendix 6—figure 1). The average yield is, thus, meaningful.

Naturally the ratio of the standard deviation compared to the average yield also depends on

the number of particles per species N and on the number of species S. Generally speaking, for

higher N and S, this ratio decreases (see Appendix 7—figure 1 for the dependency on S).
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Appendix 6—figure 1. Average yield and its sample standard deviation. For average yield

close to 0 or close to 1, the standard deviation has to be small due to the boundedness of the

yield to the interval [0, 1]. For intermediate values, the standard deviation is highest. Its value

is, however, still considerably smaller than the average yield. The parameters are L¼ 60, S¼ L,

� ¼ n ¼ 1 and different particle numbers N (colors/symbols). To obtain the average yield, the

yield has been averaged over 1000 simulations. The standard deviation corresponds to the

unbiased sample standard deviation.
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Appendix 7

Influence of the heterogeneity of the target structure for
fixed number of particles per species
Figure 3d in the main text shows how the maximal yield ymax depends on the number of

species S if the ring size L and the number of possible ring structures NS=L is fixed. This

comparison for fixed NS is motivated by the question which role the heterogeneity of a

structure plays for assembly efficiency if a certain number of structures should be realized.

Figure 3d illustrates that a higher number of species S (more heterogeneous structures) leads

to a lower maximally possible yield, suggesting that it is beneficial to build structures with as

few different species as possible. However, this situation does not correspond to the

deterministically equivalent case of fixed number of particles per species N (note, though, that

in the deterministic case the maximally possible yield is always 1, namely for a ! 0). Instead,

for higher number of species S, the number of particles per species N / 1=S decreases. How

does the heterogeneity of the structures S alter the maximally possible yield if L and N

(instead of L and NS) are fixed? Appendix 7—figure 1 shows how the maximal yield ymax and

its standard deviation (obtained as average yield and sample standard deviation for a ¼ 10
�8

when the yield has well saturated and the dynamics (except for the timescale) get

independent of the exact value of the rate-limiting activation rate) depend on the number of

species S. For homogeneous structures S ¼ 1 yield is always perfect since in this case there can

be no fluctuations between species. As a result, the average yield is 1 and the standard

deviation is 0. For increasing S, the average yield decreases until it levels off for S � 1. This

behavior indicates that indeed the decreasing number of particles per species N for larger S is

essential for the decrease of the maximal yield with S in Figure 3d. As mentioned above, the

standard deviation is largest for small S>1 and decreases with S.
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Appendix 7—figure 1. Influence of the heterogeneity of the target structure on the yield for

fixed number of particles per species N. The maximal yield and its standard deviation (obtained

as average yield and sample standard deviation for a ¼ 10
�8) are plotted against the number

of species S making up the structure of size L ¼ 60. The number of particles per species N ¼
1000 is fixed. Yield drops from a perfect value of 1 for S ¼ 1 to a smaller value and levels off

for S � 1. The standard deviation is largest for small S (except for S ¼ 1 where the yield is

always perfect) and decreases with increasing number of species.
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Appendix 8

Dependence of the maximal yield ymax in the activation
scenario on N and L
Figure 3c in the main text characterizes the dependence of the maximal yield ymax in the

activation scenario as a ‘phase diagram’ distinguishing different regimes of ymax in

dependence of the particle number N and target size L. Supplementing this figure in the main

text, Appendix 8—figure 1 shows the maximum yield that is obtained in the activation

scenario in the limit a ! 0 for fixed L in dependence of N (Appendix 8—figure 1a) as well as

for fixed N in dependence of L (Appendix 8—figure 1b). For larger particle number N, the

maximal yield exhibits a transition from 0 to 1 over roughly three orders of magnitude.

Increasing L shifts the transition to larger N. The threshold particle number where the

transition starts is characterised by N>0
th ðLÞ (see main text). Approximately, for L � 600, we find

N>0
th ðLÞ ~L2:8 (cf. main text, Figure 3c). Similarly, decreasing the target size L for fixed N, the

maximal yield exhibits a transition from 0 to 1 over roughly one order of magnitude in L. The

corresponding threshold value L>0th as a function of N is obtained as the inverse function of

N>0
th ðLÞ. Hence, at least for N � 10

5, approximately it holds L>0th ðNÞ~N0:36. Since ymax is largely

independent of the number of species S for fixed N and L (see Appendix 7), the maximal yield

in the activation scenario (for Lnuc ¼ 2) can be fully characterized as a function ymaxðN; LÞ of N
and L. Hence, ymax can roughly be expressed in terms of the threshold particle number N>0

th ðLÞ
as

ymaxðN;LÞ
»1 ifN>103N>0

th ðLÞ
<1 ifN>0

th ðLÞ<N<103N>0
th ðLÞ

¼ 0 ifN<N>0
th ðLÞ
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Appendix 8—figure 1. Dependence of the maximal yield ymax in the activation scenario on N

and L. For each data point, ymax was determined as the average yield of 100 independent

stochastic simulations of the activation scenario with a¼ 10
�12. (a) Variation of the particle

number N for different target sizes L. The maximal yield increases from 0 to 1 over roughly

three order of magnitude in N. The onset of the transition depends on L. (b) Variation of the

target size L for different particle numbers N. Increasing the target size L with N being fixed

causes the maximal yield to drop to 0. The transition from 1 to 0 spans roughly one order of

magnitude in L and its position is determined by N.

As can be seen from Figure 3c in the main text, the transition line between zero and

nonzero yield slightly flattens with increasing L. Hence, the power law N>0
th ðLÞ~ L2:8 (and

similarly for L>0th ) only holds approximately and for a restricted range in L and N. The

asymptotic behavior of N>0
th in the limit L ! ¥ remains elusive.
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