7 research outputs found

    Survived traumatic hemipelvectomy with salvage of the limb in a 14  months old toddler

    No full text
    We report on a 14 months old toddler who sustained a traumatic hemipelvectomy by being crushed between a car and a stone wall. After stabilization in the resuscitation room he was treated operatively by laparotomy, osteosynthesis of the pelvic ring, reconstruction of the both external iliac vessels and the urethra and reposition of the testicles. After 66 days he was discharged into rehabilitation. Implants were removed after eight months. 20 months after the injury, the leg was plegic, initial radiological signs of femoral head necrosis showed up but the infant was able to walk with an orthesis and a walker. Up to our knowledge, this is the youngest patient described in the literature with a survived traumatic hemipelvectomy and salvaged limb

    Fast Proton Conduction Facilitated by Minimum Water in a Series of Divinylsilyl-11-silicotungstic Acid-co-Butyl Acrylate-co-Hexanediol Diacrylate Polymers

    No full text
    Studies of proton transport in novel materials are important to enable a large array of electrochemical devices. In this study, we show that heteropoly acids (HPAs) when immobilized in polymer matrixes have highly mobile protons. Divinyl-11-silicotungstic acid, an HPA, was copolymerized with butyl acrylate and hexanediol diacrylate at various weight percentage loadings from 25% to 85% using UV initiated polymerizations. The resultant films were tan colored flexible sheets of ca. 120 μm thickness. The morphology of these films varied with loading, showing phase separation into clustered HPA above a 50 wt % loading and lamella morphologies above an 80 wt % loading. Water uptake was strongly associated with the HPA clusters, which facilitated transport of protons. This was realized by proton conductivities as high as 0.4 S cm–1 at 95 °C and 95% RH and 0.1 S cm–1 at 85 °C and 50% RH. Pulse field gradient spin echo NMR measurements indicated that water self-diffusion was fast (1.4 × 10–5 and 4.4 × 10–5 cm2 s–1 for 50% and 100% RH, respectively) at 80 °C. We show that the water in these systems is highly associated with the HPA clusters and that fast proton transport is facilitated by as few as 3 water molecules per proton
    corecore