10,013 research outputs found
The DVCS Measurement at HERA
The recent results of the studies of Deeply Virtual Compton Scattering (DVCS)
events at HERA are presented. The possibility offered by this process to gain
information about skewed parton distributions (SPD) is emphasized.Comment: Talk given at New Trends in HERA Physics 2001, Ringberg Castle,
Tegernsee, Germany, 17-22 Jun 2001, 13 pages, 10 figures, recent ZEUS data
discussed, references update
Exclusive annihilation p pbar -> gamma gamma in a generalized parton picture
Exclusive proton-antiproton annihilation into two photons at large s (~10
GeV^2) and |t|,|u| ~ s can be described by a generalized parton picture
analogous to the 'soft mechanism' in wide-angle real Compton scattering. The
two photons are emitted in the annihilation of a single fast quark and
antiquark. The matrix element describing the transition of the p-pbar system to
a q-qbar pair can be related to the timelike proton elastic form factors as
well as to the quark/antiquark distributions measured in inclusive
deep-inelastic scattering. The reaction could be studied with the proposed
1.5-15 GeV high-luminosity antiproton storage ring (HESR) at GSI.Comment: 4 pages, revtex4, 3 eps figure
Optical signature of the pressure-induced dimerization in the honeycomb iridate -LiIrO
We studied the effect of external pressure on the electrodynamic properties
of -LiIrO single crystals in the frequency range of the phonon
modes and the Ir - transitions. The abrupt hardening of several phonon
modes under pressure supports the onset of the dimerized phase at the critical
pressure =3.8 GPa. With increasing pressure an overall decrease in
spectral weight of the Ir - transitions is found up to . Above
, the local (on-site) - excitations gain spectral weight with
increasing pressure, which hints at a pressure-induced increase in the
octahedral distortions. The non-local (intersite) Ir - transitions show a
monotonic blue-shift and decrease in spectral weight. The changes observed for
the non-local excitations are most prominent well above , namely for
pressures 12 GPa, and only small changes occur for pressures close to
. The profile of the optical conductivity at high pressures (20 GPa)
appears to be indicative for the dimerized state in iridates.Comment: 10 pages, 6 figures; accepted for publication in Phys. Rev.
Unconventional magnetic order on the hyperhoneycomb Kitaev lattice in -Li2IrO3: full solution via magnetic resonant x-ray diffraction
The recently-synthesized iridate -LiIrO has been proposed as a
candidate to display novel magnetic behavior stabilized by frustration effects
from bond-dependent, anisotropic interactions (Kitaev model) on a
three-dimensional "hyperhoneycomb" lattice. Here we report a combined study
using neutron powder diffraction and magnetic resonant x-ray diffraction to
solve the complete magnetic structure. We find a complex, incommensurate
magnetic order with non-coplanar and counter-rotating Ir moments, which
surprisingly shares many of its features with the related structural polytype
"stripyhoneycomb" -LiIrO, where dominant Kitaev interactions
have been invoked to explain the stability of the observed magnetic structure.
The similarities of behavior between those two structural polytypes, which have
different global lattice topologies but the same local connectivity, is
strongly suggestive that the same magnetic interactions and the same underlying
mechanism governs the stability of the magnetic order in both materials,
indicating that both - and -LiIrO are strong candidates
to realize dominant Kitaev interactions in a solid state material.Comment: 14 pages, 9 figure
Drip and Mate Operations Acting in Test Tube Systems and Tissue-like P systems
The operations drip and mate considered in (mem)brane computing resemble the
operations cut and recombination well known from DNA computing. We here
consider sets of vesicles with multisets of objects on their outside membrane
interacting by drip and mate in two different setups: in test tube systems, the
vesicles may pass from one tube to another one provided they fulfill specific
constraints; in tissue-like P systems, the vesicles are immediately passed to
specified cells after having undergone a drip or mate operation. In both
variants, computational completeness can be obtained, yet with different
constraints for the drip and mate operations
Revisiting the Core Ontology and Problem in Requirements Engineering
In their seminal paper in the ACM Transactions on Software Engineering and
Methodology, Zave and Jackson established a core ontology for Requirements
Engineering (RE) and used it to formulate the "requirements problem", thereby
defining what it means to successfully complete RE. Given that stakeholders of
the system-to-be communicate the information needed to perform RE, we show that
Zave and Jackson's ontology is incomplete. It does not cover all types of basic
concerns that the stakeholders communicate. These include beliefs, desires,
intentions, and attitudes. In response, we propose a core ontology that covers
these concerns and is grounded in sound conceptual foundations resting on a
foundational ontology. The new core ontology for RE leads to a new formulation
of the requirements problem that extends Zave and Jackson's formulation. We
thereby establish new standards for what minimum information should be
represented in RE languages and new criteria for determining whether RE has
been successfully completed.Comment: Appears in the proceedings of the 16th IEEE International
Requirements Engineering Conference, 2008 (RE'08). Best paper awar
From Crystalline to Amorphous Germania Bilayer Films at the Atomic Scale: Preparation and Characterization
A new two-dimensional (2D) germanium dioxide film has been prepared. The film consists of interconnected germania tetrahedral units forming a bilayer structure, weakly coupled to the supporting Pt(111) metal-substrate. Density functional theory calculations predict a stable structure of 558-membered rings for germania films, while for silica films 6-membered rings are preferred. By varying the preparation conditions the degree of order in the germania films is tuned. Crystalline, intermediate ordered and purely amorphous film structures are resolved by analysing scanning tunnelling microscopy images
From Crystalline to Amorphous Germania Bilayer Films at the Atomic Scale: Preparation and Characterization
A new two-dimensional (2D) germanium dioxide film has been prepared. The film consists of interconnected germania tetrahedral units forming a bilayer structure, weakly coupled to the supporting Pt(111) metal-substrate. Density functional theory calculations predict a stable structure of 558-membered rings for germania films, while for silica films 6-membered rings are preferred. By varying the preparation conditions the degree of order in the germania films is tuned. Crystalline, intermediate ordered and purely amorphous film structures are resolved by analysing scanning tunnelling microscopy images
Finite-sample frequency distributions originating from an equiprobability distribution
Given an equidistribution for probabilities p(i)=1/N, i=1..N. What is the
expected corresponding rank ordered frequency distribution f(i), i=1..N, if an
ensemble of M events is drawn?Comment: 4 pages, 4 figure
Phase locking below rate threshold in noisy model neurons
The property of a neuron to phase-lock to an oscillatory stimulus before adapting its spike rate to the stimulus frequency plays an important role for the auditory system. We investigate under which conditions neurons exhibit this phase locking below rate threshold. To this end, we simulate neurons employing the widely used leaky integrate-and-fire (LIF) model. Tuning parameters, we can arrange either an irregular spontaneous or a tonic spiking mode. When the neuron is stimulated in both modes, a significant rise of vector strength prior to a noticeable change of the spike rate can be observed. Combining analytic reasoning with numerical simulations, we trace this observation back to a modulation of interspike intervals, which itself requires spikes to be only loosely coupled. We test the limits of this conception by simulating an LIF model with threshold fatigue, which generates pronounced anticorrelations between subsequent interspike intervals. In addition we evaluate the LIF response for harmonic stimuli of various frequencies and discuss the extension to more complex stimuli. It seems that phase locking below rate threshold occurs generically for all zero mean stimuli. Finally, we discuss our findings in the context of stimulus detection
- …