12,406 research outputs found

    Equilibrium orbit analysis in a free-electron laser with a coaxial wiggler

    Full text link
    An analysis of single-electron orbits in combined coaxial wiggler and axial guide magnetic fields is presented. Solutions of the equations of motion are developed in a form convenient for computing orbital velocity components and trajectories in the radially dependent wiggler. Simple analytical solutions are obtained in the radially-uniform-wiggler approximation and a formula for the derivative of the axial velocity v∥v_{\|} with respect to Lorentz factor γ\gamma is derived. Results of numerical computations are presented and the characteristics of the equilibrium orbits are discussed. The third spatial harmonic of the coaxial wiggler field gives rise to group IIIIII orbits which are characterized by a strong negative mass regime.Comment: 13 pages, 9 figures, to appear in phys. rev.

    Reconstruction of potential energy profiles from multiple rupture time distributions

    Full text link
    We explore the mathematical and numerical aspects of reconstructing a potential energy profile of a molecular bond from its rupture time distribution. While reliable reconstruction of gross attributes, such as the height and the width of an energy barrier, can be easily extracted from a single first passage time (FPT) distribution, the reconstruction of finer structure is ill-conditioned. More careful analysis shows the existence of optimal bond potential amplitudes (represented by an effective Peclet number) and initial bond configurations that yield the most efficient numerical reconstruction of simple potentials. Furthermore, we show that reconstruction of more complex potentials containing multiple minima can be achieved by simultaneously using two or more measured FPT distributions, obtained under different physical conditions. For example, by changing the effective potential energy surface by known amounts, additional measured FPT distributions improve the reconstruction. We demonstrate the possibility of reconstructing potentials with multiple minima, motivate heuristic rules-of-thumb for optimizing the reconstruction, and discuss further applications and extensions.Comment: 20 pages, 9 figure

    Studies of a Terawatt X-Ray Free-Electron Laser

    Get PDF
    The possibility of constructing terawatt (TW) x-ray free-electron lasers (FELs) has been discussed using novel superconducting helical undulators [5]. In this paper, we consider the conditions necessary for achieving powers in excess of 1 TW in a 1.5 {\AA} FEL using simulations with the MINERVA simulation code [7]. Steady-state simulations have been conducted using a variety of undulator and focusing configurations. In particular, strong focusing using FODO lattices is compared with the natural, weak focusing inherent in helical undulators. It is found that the most important requirement to reach TW powers is extreme transverse compression of the electron beam in a strong FODO lattice. The importance of extreme focusing of the electron beam in the production of TW power levels means that the undulator is not the prime driver for a TW FEL, and simulations are also described using planar undulators that reach near-TW power levels. In addition, TW power levels can be reached using pure self-amplified spontaneous emission (SASE) or with novel self-seeding configurations when such extreme focusing of the electron beam is applied.Comment: 10 pages, 12 figure

    Gerhard Ertl: Congratulations!

    Get PDF

    Model systems in heterogeneous catalysis: Selectivity studies at the atomic level

    Get PDF

    Models for heterogeneous catalysts: studies at the atomic level

    Get PDF
    A systematic approach to model heterogeneous catalyst material and characterization at the atomic level is presented. Two examples are used to illustrate the concepts derived from those studies. They document the problems arising on the way to create such model systems and they also indicate possible solutions. The first example is connected with activation of CO2 at the rim of electron rich MgO (thin film-supported Au islands), and the second example aims at the creation of a model system for the Phillips catalyst for ethylene polymerization and, in particular, the creation of a hydroxylated silica support

    Models for oxidation catalyst: Characterization and reaction at the atomic level

    No full text
    Three case studies to demonstrate the ability to characterize oxidation model catalysts and reactions of these systems at the atomic level are reviewed. Firstly, results on small Au aggregates on a clean MgO(1 0 0) surface which are interesting model systems for low temperature oxidation are considered. Secondly, oxidative dehydrogenation of methanol on alumina-supported Pd is addressed. The problem of oxygen storage in and on the Pd particles is studied for nanoparticles on Fe3O4(1 1 1). Finally, morphology–spectroscopy relations for oxide-supported so-called monolayer vanadia catalysts are investigated

    Low-energy diffraction; a direct-channel point of view: the background

    Get PDF
    We argue that at low-energies, typical of the resonance region, the contribution from direct-channel exotic trajectories replaces the Pomeron exchange, typical of high energies. A dual model realizing this idea is suggested. While at high energies it matches the Regge pole behavior, dominated by a Pomeron exchange, at low energies it produces a smooth, structureless behavior of the total cross section determined by a direct-channel nonlinear exotic trajectory, dual to the Pomeron exchange.Comment: 6 pages, 1 figure. Talk presented at the Second International "Cetraro" Workshop & NATO Advanced Research Workshop "Diffraction 2002", Alushta, Crimea, Ukraine, August 31 - September 6, 200
    • …
    corecore