12 research outputs found

    Attosekunden-Stoppuhr f�r Kristalle

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/175455/1/piuz202370104.pd

    Attosekunden-Stoppuhr für Kristalle

    No full text
    Wenn sich Elektronen durch einen Festkörper bewegen, wechselwirken sie laufend miteinander und definieren so wichtige Eigenschaften des Materials. Hochpräzise Kollisionsexperimente erlauben nun erstmals einen scharfen Blick auf die für Festkörper relevanten elektronischen Korrelationen direkt in der Zeitdomäne

    Interferometric carrier-envelope phase stabilization for ultrashort pulses in the mid-infrared

    No full text
    We demonstrate an active carrier-envelope phase (CEP) stabilization scheme for optical waveforms generated by difference-frequency mixing of two spectrally detuned and phase-correlated pulses. By performing ellipsometry with spectrally overlapping parts of two co-propagating near-infrared generation pulse trains, we stabilize their relative timing to 18 as. Consequently, we can lock the CEP of the generated mid-infrared (MIR) pulses with a remaining phase jitter below 30 mrad. To validate this technique, we employ these MIR pulses for high-harmonic generation in a bulk semiconductor. Our compact, low-cost, and inherently drift-free concept could bring long-term CEP stability to the broad class of passively phase-locked OPA and OPCPA systems operating in a wide range of spectral windows, pulse energies, and repetition rates

    Attosecond clocking of correlations between Bloch electrons

    No full text
    Delocalized Bloch electrons and the low-energy correlations between them determine key optical1, electronic2 and entanglement3 functionalities of solids, all the way through to phase transitions4,5. To directly capture how many-body correlations affect the actual motion of Bloch electrons, subfemtosecond (1 fs = 10−15 s) temporal precision 6,7,8,9,10,11,12,13,14,15 is desirable. Yet, probing with attosecond (1 as = 10−18 s) high-energy photons has not been energy-selective enough to resolve the relevant millielectronvolt-scale interactions of electrons1,2,3,4,5,16,17 near the Fermi energy. Here, we use multi-terahertz light fields to force electron–hole pairs in crystalline semiconductors onto closed trajectories, and clock the delay between separation and recollision with 300 as precision, corresponding to 0.7% of the driving field’s oscillation period. We detect that strong Coulomb correlations emergent in atomically thin WSe2 shift the optimal timing of recollisions by up to 1.2 ± 0.3 fs compared to the bulk material. A quantitative analysis with quantum-dynamic many-body computations in a Wigner-function representation yields a direct and intuitive view on how the Coulomb interaction, non-classical aspects, the strength of the driving field and the valley polarization influence the dynamics. The resulting attosecond chronoscopy of delocalized electrons could revolutionize the understanding of unexpected phase transitions and emergent quantum-dynamic phenomena for future electronic, optoelectronic and quantum-information technologies
    corecore