22 research outputs found
Efficacy and safety of daratumumab combined with all-trans retinoic acid in relapsed/refractory multiple myeloma
The efficacy of daratumumab depends partially on CD38 expression on multiple myeloma (MM) cells. We have previously shown that all-trans retinoic acid (ATRA) upregulates CD38 expression and reverts daratumumab-resistance ex vivo. We therefore evaluated the optimal dose, efficacy, and safety of daratumumab combined with ATRA in patients with daratumumab-refractory MM in a phase 1/2 study (NCT02751255). In part A of the study, 63 patients were treated with daratumumab monotherapy. Fifty patients with daratumumabrefractory MM were subsequently enrolled in part B and treated with daratumumab (reintensified schedule) combined with ATRA until disease progression. The recommended phase 2 dose of ATRA in combination with daratumumab was defined as 45 mg/m2. At this dose, the overall response rate (ORR) was 5%, indicating that the primary endpoint (ORR $15%) was not met. However, most patients (66%) achieved at least stable disease. After a median follow-up of 43 months, the median progression-free survival (PFS) for all patients was 2.8 months. Patients who previously achieved at least a partial response or minimal response/stable disease with prior daratumumab monotherapy had a significantly longer PFS compared with patients who immediately progressed during daratumumab as single agent (median PFS 3.4 and 2.8 vs 1.3 months). The median overall survival was 19.1 months. The addition of ATRA did not increase the incidence of adverse events. Flow cytometric analysis revealed that ATRA temporarily increased CD38 expression on immune cell subsets. In conclusion, the addition of ATRA and reintensification of daratumumab had limited activity in patients with daratumumab-refractory MM, which may be explained by the transient upregulation of CD38 expression. This trial was registered at www.clinicaltrials.gov as #NCT02751255
Teclistamab impairs humoral immunity in patients with heavily pretreated myeloma:importance of immunoglobulin supplementation
Teclistamab and other B-cell maturation antigen (BCMA)-targeting bispecific antibodies (BsAbs) have substantial activity in patients with heavily pretreated multiple myeloma (MM) but are associated with a high rate of infections. BCMA is also expressed on normal plasma cells and mature B cells, which are essential for the generation of a humoral immune response. The aim of this study was to improve the understanding of the impact of BCMA-targeting BsAbs on humoral immunity. The impact of teclistamab on polyclonal immunoglobulins and B cell counts was evaluated in patients with MM who received onceweekly teclistamab 1.5 mg/kg subcutaneously. Vaccination responses were assessed in a subset of patients. Teclistamabinduced rapid depletion of peripheral blood B cells in patients with MM and eliminated normal plasma cells in ex vivo assays. In addition, teclistamab reduced the levels of polyclonal immunoglobulins (immunoglobulin G [IgG], IgA, IgE, and IgM), without recovery over time while receiving teclistamab therapy. Furthermore, response to vaccines against Streptococcus pneumoniae, Haemophilus influenzae type B, and severe acute respiratory syndrome coronavirus 2 was severely impaired in patients treated with teclistamab compared with vaccination responses observed in patients with newly diagnosed MM or relapsed/refractory MM. Intravenous immunoglobulin (IVIG) use was associated with a significantly lower risk of serious infections among patients treated with teclistamab (cumulative incidence of infections at 6 months: 5.3% with IVIG vs 54.8% with observation only [P < .001]). In conclusion, our data show severe defects in humoral immunity induced by teclistamab, the impact of which can be mitigated by the use of immunoglobulin supplementation. This trial was registered at www.ClinicalTrials.gov as #NCT04557098.</p
Teclistamab impairs humoral immunity in patients with heavily pretreated myeloma:importance of immunoglobulin supplementation
Teclistamab and other B-cell maturation antigen (BCMA)-targeting bispecific antibodies (BsAbs) have substantial activity in patients with heavily pretreated multiple myeloma (MM) but are associated with a high rate of infections. BCMA is also expressed on normal plasma cells and mature B cells, which are essential for the generation of a humoral immune response. The aim of this study was to improve the understanding of the impact of BCMA-targeting BsAbs on humoral immunity. The impact of teclistamab on polyclonal immunoglobulins and B cell counts was evaluated in patients with MM who received onceweekly teclistamab 1.5 mg/kg subcutaneously. Vaccination responses were assessed in a subset of patients. Teclistamabinduced rapid depletion of peripheral blood B cells in patients with MM and eliminated normal plasma cells in ex vivo assays. In addition, teclistamab reduced the levels of polyclonal immunoglobulins (immunoglobulin G [IgG], IgA, IgE, and IgM), without recovery over time while receiving teclistamab therapy. Furthermore, response to vaccines against Streptococcus pneumoniae, Haemophilus influenzae type B, and severe acute respiratory syndrome coronavirus 2 was severely impaired in patients treated with teclistamab compared with vaccination responses observed in patients with newly diagnosed MM or relapsed/refractory MM. Intravenous immunoglobulin (IVIG) use was associated with a significantly lower risk of serious infections among patients treated with teclistamab (cumulative incidence of infections at 6 months: 5.3% with IVIG vs 54.8% with observation only [P < .001]). In conclusion, our data show severe defects in humoral immunity induced by teclistamab, the impact of which can be mitigated by the use of immunoglobulin supplementation. This trial was registered at www.ClinicalTrials.gov as #NCT04557098.</p
NK Cell Phenotype Is Associated With Response and Resistance to Daratumumab in Relapsed/Refractory Multiple Myeloma
The CD38-targeting antibody daratumumab has marked activity in multiple myeloma (MM). Natural killer (NK) cells play an important role during daratumumab therapy by mediating antibody-dependent cellular cytotoxicity via their FcÎłRIII receptor (CD16), but they are also rapidly decreased following initiation of daratumumab treatment. We characterized the NK cell phenotype at baseline and during daratumumab monotherapy by flow cytometry and cytometry by time of flight to assess its impact on response and development of resistance (DARA-ATRA study; NCT02751255). At baseline, nonresponding patients had a significantly lower proportion of CD16 + and granzyme B + NK cells, and higher frequency of TIM-3 + and HLA-DR + NK cells, consistent with a more activated/exhausted phenotype. These NK cell characteristics were also predictive of inferior progression-free survival and overall survival. Upon initiation of daratumumab treatment, NK cells were rapidly depleted. Persisting NK cells exhibited an activated and exhausted phenotype with reduced expression of CD16 and granzyme B, and increased expression of TIM-3 and HLA-DR. We observed that addition of healthy donor-derived purified NK cells to BM samples from patients with either primary or acquired daratumumab-resistance improved daratumumab-mediated MM cell killing. In conclusion, NK cell dysfunction plays a role in primary and acquired daratumumab resistance. This study supports the clinical evaluation of daratumumab combined with adoptive transfer of NK cells
CD38-targeted therapy with daratumumab reduces autoantibody levels in multiple myeloma patients
Autoantibody-producing plasma cells are frequently resistant to conventional immunosuppressive treatments and B-cell depletion therapy. As a result of this resistance, autoreactive plasma cells survive conventional therapy, resulting in persistent autoantibody production and inflammation. CD38 is highly and uniformly expressed on normal and malignant plasma cells. Daratumumab is the first in class CD38-targeting monoclonal antibody approved for the treatment of multiple myeloma (MM). To evaluate the potential activity of daratumumab in antibody-mediated autoimmune disorders by targeting autoantibody-producing plasma cells, we evaluated serum levels of autoantibodies in MM patients during daratumumab treatment. We found that 6 out of 41 (15%) had detectable autoantibodies before initiation of daratumumab therapy, and that these autoantibodies rapidly disappeared in 5 out of 6 patients during daratumumab treatment. Our data provide support for the evaluation of daratumumab in patients with autoantibody-dependent autoimmune disorders
Current state of the art and prospects of t cell-redirecting bispecific antibodies in multiple myeloma
Multiple myeloma (MM) patients eventually develop multi-drug-resistant disease with poor survival. Hence, the development of novel treatment strategies is of great importance. Recently, different classes of immunotherapeutic agents have shown great promise in heavily pre-treated MM, including T cell-redirecting bispecific antibodies (BsAbs). These BsAbs simultaneously interact with CD3 on effector T cells and a tumor-associated antigen on MM cells, resulting in redirection of T cells to MM cells. This leads to the formation of an immunologic synapse, the release of granzymes/perforins, and subsequent tumor cell lysis. Several ongoing phase 1 studies show substantial activity and a favorable toxicity profile with BCMA-, GPRC5D-, or FcRH5-targeting BsAbs in heavily pre-treated MM patients. Resistance mechanisms against BsAbs include tumor-related features, T cell characteristics, and impact of components of the immunosuppressive tumor microenvironment. Various clinical trials are currently evaluating combination therapy with a BsAb and another agent, such as a CD38-targeting antibody or an immunomodulatory drug (e.g., pomalidomide), to further improve response depth and duration. Additionally, the combination of two BsAbs, simultaneously targeting two different antigens to prevent antigen escape, is being explored in clinical studies. The evaluation of BsAbs in earlier lines of therapy, including newly diagnosed MM, is warranted, based on the efficacy of BsAbs in advanced MM
Preclinical rationale for targeting the PDâ1/PDâL1 axis in combination with a CD38 antibody in multiple myeloma and other CD38â positive malignancies
The CD38âtargeting antibody daratumumab mediates its antiâmyeloma activities not only through Fcâreceptorâdependent effector mechanisms, but also by its effects on Tâcell immunity through depletion of CD38+ regulatory Tâcells, regulatory Bâcells, and myeloidâderived suppressor cells. Therefore, combining daratumumab with modulators of other potent immune inhibitory pathways, such as the PDâ1/PDâL1 axis, may further improve its efficacy. We show that multiple myeloma (MM) cells from relapsed/refractory patients have increased expression of PDâL1, compared to newly diagnosed patients. Furthermore, PDâ1 is upregulated on Tâcells from both newly diagnosed and relapsed/refractory MM patients, compared to healthy controls. In shortâterm experiments with bone marrow samples from MM patients, daratumumabâmediated lysis was mainly associated with the MM cellsâ CD38 expression levels and the effector (NK-cells/monocytes/Tâcells)âtoâtarget ratio, but not with the PDâL1 expression levels or PDâ1+ Tâcell frequencies. Although PDâ1 blockade with nivolumab did not affect MM cell viability or enhanced daratumumabâmediated lysis in shortâterm ex vivo experiments, nivolumab resulted in a mild but clear increase in Tâcell numbers. Moreover, with a longer treatment duration, PDâ1 blockade markedly improved antiâCD38 antibodyâmediated cytotoxicity in vivo in murine CD38+ tumor models. In conclusion, dual targeting of CD38 and PDâ1 may represent a promising strategy for treating MM and other CD38âpositive malignancies