3,735 research outputs found

    The 3-graviton vertex function in thermal quantum gravity

    Full text link
    The high temperature limit of the 3-graviton vertex function is studied in thermal quantum gravity, to one loop order. The leading (T4T^4) contributions arising from internal gravitons are calculated and shown to be twice the ones associated with internal scalar particles, in correspondence with the two helicity states of the graviton. The gauge invariance of this result follows in consequence of the Ward and Weyl identities obeyed by the thermal loops, which are verified explicitly.Comment: 19 pages, plain TeX, IFUSP/P-100

    Hard Thermal Loops in the n-Dimensional phi3 Theory

    Full text link
    We derive a closed-form result for the leading thermal contributions which appear in the n-dimensional phi3 theory at high temperature. These contributions become local only in the long wavelength and in the static limits, being given by different expressions in these two limits.Comment: 3 pages, one figure. To be published in the Brazilian Journal of Physic

    Non-linear electromagnetic interactions in thermal QED

    Get PDF
    We examine the behavior of the non-linear interactions between electromagnetic fields at high temperature. It is shown that, in general, the log(T) dependence on the temperature of the Green functions is simply related to their UV behavior at zero-temperature. We argue that the effective action describing the nonlinear thermal electromagnetic interactions has a finite limit as T tends to infinity. This thermal action approaches, in the long wavelength limit, the negative of the corresponding zero-temperature action.Comment: 7 pages, IFUSP/P-111

    The graviton self-energy in thermal quantum gravity

    Get PDF
    We show generally that in thermal gravity, the one-particle irreducible 2-point function depends on the choice of the basic graviton fields. We derive the relevant properties of a physical graviton self-energy, which is independent of the parametrization of the graviton field. An explicit expression for the graviton self-energy at high-temperature is given to one-loop order.Comment: 13 pages, 2 figure

    Non Abelian Sugawara Construction and the q-deformed N=2 Superconformal Algebra

    Full text link
    The construction of a q-deformed N=2 superconformal algebra is proposed in terms of level 1 currents of Uq(su^(2)){\cal{U}}_{q} ({\widehat{su}}(2)) quantum affine Lie algebra and a single real Fermi field. In particular, it suggests the expression for the q-deformed Energy-Momentum tensor in the Sugawara form. Its constituents generate two isomorphic quadratic algebraic structures. The generalization to Uq(su^(N+1)){\cal{U}}_{q} ({\widehat{su}}(N+1)) is also proposed.Comment: AMSLATEX, 21page

    General structure of the graviton self-energy

    Get PDF
    The graviton self-energy at finite temperature depends on fourteen structure functions. We show that, in the absence of tadpoles, the gauge invariance of the effective action imposes three non-linear relations among these functions. The consequences of such constraints, which must be satisfied by the thermal graviton self-energy to all orders, are explicitly verified in general linear gauges to one loop order.Comment: 4 pages, minor corrections of typo

    Behavior of logarithmic branch cuts in the self-energy of gluons at finite temperature

    Get PDF
    We give a simple argument for the cancellation of the log(-k^2) terms (k is the gluon momentum) between the zero-temperature and the temperature-dependent parts of the thermal self-energy.Comment: 4 page

    Thermal matter and radiation in a gravitational field

    Full text link
    We study the one-loop contributions of matter and radiation to the gravitational polarization tensor at finite temperatures. Using the analytically continued imaginary-time formalism, the contribution of matter is explicitly given to next-to-leading (T2T^2) order. We obtain an exact form for the contribution of radiation fields, expressed in terms of generalized Riemann zeta functions. A general expression is derived for the physical polarization tensor, which is independent of the parametrization of graviton fields. We investigate the effective thermal masses associated with the normal modes of the corresponding graviton self-energy.Comment: 32 pages, IFUSP/P-107

    Hamiltonian Reduction and the Construction of q-Deformed Extensions of the Virasoro Algebra

    Full text link
    In this paper we employ the construction of Dirac bracket for the remaining current of sl(2)qsl(2)_q deformed Kac-Moody algebra when constraints similar to those connecting the sl(2)sl(2)-WZW model and the Liouville theory are imposed and show that it satisfy the q-Virasoro algebra proposed by Frenkel and Reshetikhin. The crucial assumption considered in our calculation is the existence of a classical Poisson bracket algebra induced, in a consistent manner by the correspondence principle, mapping the quantum generators into commuting objects of classical nature preserving their algebra.Comment: 6 pages, late

    Extended Gibbs ensembles with flow

    Full text link
    A statistical treatment of finite unbound systems in the presence of collective motions is presented and applied to a classical Lennard-Jones Hamiltonian, numerically simulated through molecular dynamics. In the ideal gas limit, the flow dynamics can be exactly re-casted into effective time-dependent Lagrange parameters acting on a standard Gibbs ensemble with an extra total energy conservation constraint. Using this same ansatz for the low density freeze-out configurations of an interacting expanding system, we show that the presence of flow can have a sizeable effect on the microstate distribution.Comment: 7 pages, 4 figure
    corecore