655 research outputs found

    Core-Softened System With Attraction: Trajectory Dependence of Anomalous Behavior

    Full text link
    In the present article we carry out a molecular dynamics study of the core-softened system and show that the existence of the water-like anomalies in this system depends on the trajectory in PρTP-\rho-T space along which the behavior of the system is studied. For example, diffusion and structural anomalies are visible along isotherms as a function of density, but disappears along the isochores and isobars as a function of temperature. On the other hand, the diffusion anomaly may be seen along adiabats as a function of temperature, density and pressure. It should be noted that it may be no signature of a particular anomaly along a particular trajectory, but the anomalous region for that particular anomaly can be defined when all possible trajectories in the same space are examined (for example, signature of diffusion anomaly is evident through the crossing of different isochors. However, there is no signature of diffusion anomaly along a particular isochor). We also analyze the applicability of the Rosenfeld entropy scaling relations to this system in the regions with the water-like anomalies. It is shown that the validity of the Rosenfeld scaling relation for the diffusion coefficient also depends on the trajectory in the PρTP-\rho-T space along which the kinetic coefficients and the excess entropy are calculated.Comment: 16 pages, 21 figures. arXiv admin note: this contains much of the content of arXiv:1010.416

    Inversion of Sequence of Diffusion and Density Anomalies in Core-Softened Systems

    Full text link
    In this paper we present a simulation study of water-like anomalies in core-softened system introduced in our previous publications. We investigate the anomalous regions for a system with the same functional form of the potential but with different parameters and show that the order of the region of anomalous diffusion and the region of density anomaly is inverted with increasing the width of the repulsive shoulder.Comment: 8 pages, 10 figure

    Quasi-binary amorphous phase in a 3D system of particles with repulsive-shoulder interactions

    Get PDF
    We report a computer-simulation study of the equilibrium phase diagram of a three-dimensional system of particles with a repulsive step potential. Using free-energy calculations, we have determined the equilibrium phase diagram of this system. At low temperatures, we observe a number of distinct crystal phases. However, under certain conditions the system undergoes a glass transition in a regime where the liquid appears thermodynamically stable. We argue that the appearance of this amorphous low-temperature phase can be understood by viewing this one-component system as a pseudo-binary mixture.Comment: 4 pages, 4 figure

    A central extension of \cD Y_{\hbar}(\gtgl_2) and its vertex representations

    Full text link
    A central extension of \cD Y_{\hbar}(\gtgl_2) is proposed. The bosonization of level 11 module and vertex operators are also given.Comment: 10 pages, AmsLatex, to appear in Lett. in Math. Phy

    Local orientational order in the Stockmayer liquid

    Full text link
    Phase behaviour of the Stockmayer fluid is studied with a method similar to the Monte-Carlo annealing scheme. We introduce a novel order parameter which is sensitive to the local co-orientation of the dipoles of particles in the fluid. We exhibit a phase diagram based on the behaviour of the order parameter in the density region 0.1 \leq {\rho}\ast \leq 0.32. Specifically, we observe and analyse a second order locally disordered fluid \rightarrow locally oriented fluid phase transition.Comment: 13 pages, 7 figure

    Lattice Model for water-solute mixtures

    Full text link
    A lattice model for the study of mixtures of associating liquids is proposed. Solvent and solute are modeled by adapting the associating lattice gas (ALG) model. The nature of interaction solute/solvent is controlled by tuning the energy interactions between the patches of ALG model. We have studied three set of parameters, resulting on, hydrophilic, inert and hydrophobic interactions. Extensive Monte Carlo simulations were carried out and the behavior of pure components and the excess properties of the mixtures have been studied. The pure components: water (solvent) and solute, have quite similar phase diagrams, presenting: gas, low density liquid, and high density liquid phases. In the case of solute, the regions of coexistence are substantially reduced when compared with both the water and the standard ALG models. A numerical procedure has been developed in order to attain series of results at constant pressure from simulations of the lattice gas model in the grand canonical ensemble. The excess properties of the mixtures: volume and enthalpy as the function of the solute fraction have been studied for different interaction parameters of the model. Our model is able to reproduce qualitatively well the excess volume and enthalpy for different aqueous solutions. For the hydrophilic case, we show that the model is able to reproduce the excess volume and enthalpy of mixtures of small alcohols and amines. The inert case reproduces the behavior of large alcohols such as, propanol, butanol and pentanol. For last case (hydrophobic), the excess properties reproduce the behavior of ionic liquids in aqueous solution.Comment: 28 pages, 13 figure

    Free Energy Approach to the Formation of an Icosahedral Structure during the Freezing of Gold Nanoclusters

    Full text link
    The freezing of metal nanoclusters such as gold, silver, and copper exhibits a novel structural evolution. The formation of the icosahedral (Ih) structure is dominant despite its energetic metastability. This important phenomenon, hitherto not understood, is studied by calculating free energies of gold nanoclusters. The structural transition barriers have been determined by using the umbrella sampling technique combined with molecular dynamics simulations. Our calculations show that the formation of Ih gold nanoclusters is attributed to the lower free energy barrier from the liquid to the Ih phases compared to the barrier from the liquid to the face-centered-cubic crystal phases

    Two liquid states of matter: A new dynamic line on a phase diagram

    Full text link
    It is generally agreed that the supercritical region of a liquid consists of one single state (supercritical fluid). On the other hand, we show here that liquids in this region exist in two qualitatively different states: "rigid" and "non-rigid" liquid. Rigid to non-rigid transition corresponds to the condition {\tau} ~ {\tau}0, where {\tau}is liquid relaxation time and {\tau}0 is the minimal period of transverse quasi-harmonic waves. This condition defines a new dynamic line on the phase diagram, and corresponds to the loss of shear stiffness of a liquid at all available frequencies, and consequently to the qualitative change of many important liquid properties. We analyze the dynamic line theoretically as well as in real and model liquids, and show that the transition corresponds to the disappearance of high-frequency sound, qualitative changes of diffusion and viscous flow, increase of particle thermal speed to half of the speed of sound and reduction of the constant volume specific heat to 2kB per particle. In contrast to the Widom line that exists near the critical point only, the new dynamic line is universal: it separates two liquid states at arbitrarily high pressure and temperature, and exists in systems where liquid - gas transition and the critical point are absent overall.Comment: 21 pages, 8 figure

    Waterlike thermodynamic anomalies in a repulsive-step potential system

    Full text link
    We report a computer-simulation study of the equilibrium phase diagram of a three-dimensional system of particles with a repulsive step potential. The phase diagram is obtained using free-energy calculations. At low temperatures, we observe a number of distinct crystal phases. We show that at certain values of the potential parameters the system exhibits the water-like thermodynamic anomalies: density anomaly and diffusion anomaly. The anomalies disappear with increasing the repulsive step width: their locations move to the region inside the crystalline phase.Comment: 6 pages, 5 figure
    corecore