255 research outputs found

    Single-stage sealing of ceramic tiles by means of high power diode laser radiation

    Get PDF
    An investigation has been carried out using a 60 W high power diode laser (HPDL) to determine the feasibility of sealing the void between adjoining ceramic tiles with a specially developed grout material. A single-stage process has subsequently been devised using a new grout material which consists of two distinct components: a crushed ceramic tile mix substrate and a glazed enamel surface; the crushed ceramic tile mix provides a tough, inexpensive bulk substrate, whilst the enamel provides an impervious surface glaze. HPDL processing has resulted in crack and porosity free seals produced in normal atmospheric conditions. The single-stage grout is simple to formulate and easy to apply. Tiles were successfully sealed with power densities as low as 750 W/cm2 and at rates of up to 420 mm/min. Bonding of the enamel to the crushed ceramic tile mix was identified as being primarily due to van der Waals forces and, on a very small scale, some of the crushed ceramic tile mix material dissolving into the glaze

    M-branes and N=2 Strings

    Get PDF
    The string field theory of N=(2,1) heterotic strings describes a set of self-dual Yang-Mills fields coupled to self-dual gravity in 2+2 dimensions. We show that the exact classical action for this field theory is a certain complexification of the Green-Schwarz/Dirac-Born-Infeld string action, closely related to the four dimensional Wess-Zumino action describing self-dual gauge fields. This action describes the world-volume of a 2+2d ``M-brane'', which gives rise upon different null reductions to critical strings and membranes. We discuss a number of further properties of N=2 heterotic strings, such as the geometry of null reduction, general features of a covariant formulation, and possible relations to BPS and GKM algebras.Comment: 49 pages, harvmac; 1 figure (uses epsf.tex). References adde

    The target space geometry of N=(2,1) string theory

    Get PDF
    We describe the O(α0){\cal{O}}({\alpha'}^0) constraints on the target space geometry of the N=(2,1)N=(2,1) heterotic superstring due to the left-moving N=1N=1 supersymmetry and U(1)U(1) currents. In the fermionic description of the internal sector supersymmetry is realized quantum mechanically, so that both tree-level and one-loop effects contribute to the order O(α0){\cal{O}}({\alpha'}^0) constraints. We also discuss the physical interpretation of the resulting target space geometry in terms of configurations of a 2+22+2-dimensional object propagating in a 10+210+2-dimensional spacetime with a null isometry, which has recently been suggested as a unified description of string and M theory.Comment: 41 pages, 5 figures, standard LaTeX, uses epsf.tex. Some typos corrected, discussion in footnote 1 correcte

    Super-A-polynomials for Twist Knots

    Full text link
    We conjecture formulae of the colored superpolynomials for a class of twist knots KpK_p where p denotes the number of full twists. The validity of the formulae is checked by applying differentials and taking special limits. Using the formulae, we compute both the classical and quantum super-A-polynomial for the twist knots with small values of p. The results support the categorified versions of the generalized volume conjecture and the quantum volume conjecture. Furthermore, we obtain the evidence that the Q-deformed A-polynomials can be identified with the augmentation polynomials of knot contact homology in the case of the twist knots.Comment: 22+16 pages, 16 tables and 5 figures; with a Maple program by Xinyu Sun and a Mathematica notebook in the ancillary files linked on the right; v2 change in appendix B, typos corrected and references added; v3 change in section 3.3; v4 corrections in Ooguri-Vafa polynomials and quantum super-A-polynomials for 7_2 and 8_1 are adde

    Pathogen evolution across the agro-ecological interface: implications for disease management

    Get PDF
    Infectious disease is a major causal factor in the demography of human, plant and animal populations. While it is generally accepted in medical, veterinary and agricultural contexts that variation in host resistance and pathogen virulence and aggressiveness is of central importance to understanding patterns of infection, there has been remarkably little effort to directly investigate causal links between population genetic structure and disease dynamics, and even less work on factors influencing host–pathogen coevolution. The lack of empirical evidence is particularly surprising, given the potential for such variation to not only affect disease dynamics and prevalence, but also when or where new diseases or pathotypes emerge. Increasingly, this lack of knowledge has led to calls for an integrated approach to disease management, incorporating both ecological and evolutionary processes. Here, we argue that plant pathogens occurring in agro-ecosystems represent one clear example where the application of evolutionary principles to disease management would be of great benefit, as well as providing model systems for advancing our ability to generalize about the long-term coevolutionary dynamics of host–pathogen systems. We suggest that this is particularly the case given that agro-ecological host–pathogen interactions represent a diversity of situations ranging from those that only involve agricultural crops through to those that also include weedy crop relatives or even unrelated native plant communities. We begin by examining some of the criteria that are important in determining involvement in agricultural pathogen evolution by noncrop plants. Throughout we use empirical examples to illustrate the fact that different processes may dominate in different systems, and suggest that consideration of life history and spatial structure are central to understanding dynamics and direction of the interaction. We then discuss the implications that such interactions have for disease management in agro-ecosystems and how we can influence those outcomes. Finally, we identify several major gaps where future research could increase our ability to utilize evolutionary principles in managing disease in agro-ecosystems

    PNC-27, a Chimeric p53-Penetratin Peptide Binds to HDM-2 in a p53 Peptide-like Structure, Induces Selective Membrane-Pore Formation and Leads to Cancer Cell Lysis

    Get PDF
    PNC-27, a 32-residue peptide that contains an HDM-2 binding domain and a cell-penetrating peptide (CPP) leader sequence kills cancer, but not normal, cells by binding to HDM-2 associated with the plasma membrane and induces the formation of pores causing tumor cell lysis and necrosis. Conformational energy calculations on the structure of PNC-27 bound to HDM-2 suggest that 1:1 complexes form between PNC-27 and HDM-2 with the leader sequence pointing away from the complex. Immuno-scanning electron microscopy was carried out with cancer cells treated with PNC-27 and decorated with an anti-PNC-27 antibody coupled to 6 nm gold particles and an anti-HDM-2 antibody linked to 15 nm gold particles. We found multiple 6 nm- and 15 nm-labeled gold particles in approximately 1:1 ratios in layered ring-shaped structures in the pores near the cell surface suggesting that these complexes are important to the pore structure. No pores formed in the control, PNC-27-treated untransformed fibroblasts. Based on the theoretical and immuno-EM studies, we propose that the pores are lined by PNC-27 bound to HDM-2 at the membrane surface with the PNC-27 leader sequence lining the pores or by PNC-27 bound to HDM-2

    David Hume on Banking and Hoarding

    Get PDF
    David Hume opposes banks and favors hoarding. The only bank he reluctantly approves of is a public, 100% reserve bank. Other banks increase money supply and prices, hindering exports and economic growth. For Hume, a 100% reserve public bank would lead to ‘‘the destruction of paper-credit’’ ([1752] 1985, p. 285), fostering economic growth instead by preventing inflation. Additionally, a 100% reserve bank hoards a large quantity of gold and silver, which is available in case of national emergency

    Recommendations on data sharing in HIV drug resistance research

    Get PDF
    • Human immunodeficiency virus (HIV) drug resistance has implications for antiretroviral treatment strategies and for containing the HIV pandemic because the development of HIV drug resistance leads to the requirement for antiretroviral drugs that may be less effective, less well-tolerated, and more expensive than those used in first-line regimens.  • HIV drug resistance studies are designed to determine which HIV mutations are selected by antiretroviral drugs and, in turn, how these mutations affect antiretroviral drug susceptibility and response to future antiretroviral treatment regimens.  • Such studies collectively form a vital knowledge base essential for monitoring global HIV drug resistance trends, interpreting HIV genotypic tests, and updating HIV treatment guidelines.  • Although HIV drug resistance data are collected in many studies, such data are often not publicly shared, prompting the need to recommend best practices to encourage and standardize HIV drug resistance data sharing.  • In contrast to other viruses, sharing HIV sequences from phylogenetic studies of transmission dynamics requires additional precautions as HIV transmission is criminalized in many countries and regions.  • Our recommendations are designed to ensure that the data that contribute to HIV drug resistance knowledge will be available without undue hardship to those publishing HIV drug resistance studies and without risk to people living with HIV
    corecore