126 research outputs found

    Influence of Arbuscular Mycorrhizae on Biomass Production and Nitrogen Fixation of Berseem Clover Plants Subjected to Water Stress.

    Get PDF
    Several studies, performed mainly in pots, have shown that arbuscular mycorrhizal symbiosis can mitigate the negative effects of water stress on plant growth. No information is available about the effects of arbuscular mycorrhizal symbiosis on berseem clover growth and nitrogen (N) fixation under conditions of water shortage. A field experiment was conducted in a hilly area of inner Sicily, Italy, to determine whether symbiosis with AM fungi can mitigate the detrimental effects of drought stress (which in the Mediterranean often occurs during the late period of the growing season) on forage yield and symbiotic N2 fixation of berseem clover. Soil was either left under water stress (i.e., rain-fed conditions) or the crop was well-watered. Mycorrhization treatments consisted of inoculation of berseem clover seeds with arbuscular mycorrhizal spores or suppression of arbuscular mycorrhizal symbiosis by means of fungicide treatments. Nitrogen biological fixation was assessed using the 15N-isotope dilution technique. Arbuscular mycorrhizal symbiosis was able to mitigate the negative effect of water stress on berseem clover grown in a typical semiarid Mediterranean environment. In fact, under water stress conditions, arbuscular mycorrhizal symbiosis resulted in increases in total biomass, N content, and N fixation, whereas no effect of crop mycorrhization was observed in the well-watered treatment

    Plant Arrangement Effects on Dry Matter Production and Nitrogen Fixation of Berseem Clover: Annual Ryegrass Mixture

    Get PDF
    Agronomic factors affect the productivity and efficiency of cereal-legume intercropping systems (Ofori & Stern, 1987). This research aimed to determine the effects of different plant arrangement on hay yield, nitrogen (N) content and N fixation of berseem clover-annual ryegrass mixture in a Mediterranean semi-arid environment

    Agroecosystem Performances of Livestock Farms in a Mountain Area of Sicily

    Get PDF
    Agroecosystem performance indicators (APIs) represent instruments for studying agroecosystem performance via an input/output approach and a knowledge base, with the aim of improving the sustainability level of the farm\u27s activity (Tellarini & Caporali, 2000). This research used APIs to evaluate the influence of stocking rate on the performance (in terms of energy) of farms in a mountainous area of northern Sicily, Italy

    Use of Green Sulla Forage for Feeding. 1. Effects on Lamb Growth and Gastrointestinal Nematode Parasite Infestation

    Get PDF
    Recent studies have shown that some forage legumes containing condensed tannins (CT), such as sulla (Hedysarum coronarium L.), can reduce the gastrointestinal nematode burden in sheep (Niezen et al., 1998) and increase post-ruminal protein availability (Waghorn et al., 1994). This study aimed to evaluate the anthelmintic and nutritional properties of sulla forage in relation to its CT content. Thus, the growth performance and the level of nematode infestation of lambs fed sulla were compared with those of lambs fed ryegrass (Lolium multiflorum Lam. subsp. wersterwoldicum), lacking in CT

    Addition of high C:N crop residues to a P-limited substrate constrains the benefits of arbuscular mycorrhizal symbiosis for wheat P and N nutrition

    Get PDF
    Many aspects concerning the role of arbuscular mycorrhizal (AM) fungi in plant nutrient uptake from organic sources remain unclear. Here, we investigated the contribution of AM symbiosis to N and P uptake by durum wheat after the addition of a high C:N biomass to a P-limited soil. Plants were grown in pots in the presence or absence of a multispecies AM inoculum, with (Org) or without (Ctr) the addition of 15N-labelled organic matter (OM). A further treatment, in which 15N was applied in mineral form (Ctr+N) in the same amount as that supplied in the Org treatment, was also included. Inoculation with AM had positive effects on plant growth in both control treatments (Ctr and Ctr+N), mainly linked to an increase in plant P uptake. The addition of OM, increasing the P available in the soil for the plants, resulted in a marked decrease in the contribution of AM symbiosis to plant growth and nutrient uptake, although the percentage of mycorrhization was higher in the Org treatment than in the controls. In addition, mycorrhization drastically reduced the recovery of 15N from the OM added to the soil whereas it slightly increased the N recovery from the mineral fertiliser. This suggests that plants and AM fungi probably exert a differential competition for different sources of N available in the soil. On the whole, our results provide a contribution to a better understanding of the conditions under which AM fungi can play an effective role in mitigating the negative effects of nutritional stresses in plants

    Nitrogen Type and Availability Drive Mycorrhizal Effects on Wheat Performance, Nitrogen Uptake and Recovery, and Production Sustainability

    Get PDF
    Plant performance is strongly dependent on nitrogen (N), and thus increasing N nutrition is of great relevance for the productivity of agroecosystems. The effects of arbuscular mycorrhizal (AM) fungi on plant N acquisition are debated because contradictory results have been reported. Using 15N-labeled fertilizers as a tracer, we evaluated the effects of AM fungi on N uptake and recovery from mineral or organic sources in durum wheat. Under sufficient N availability, AM fungi had no effects on plant biomass but increased N concentrations in plant tissue, plant N uptake, and total N recovered from the fertilizer. In N-deficient soil, AM fungi led to decreased aboveground biomass, which suggests that plants and AM fungi may have competed for N. When the organic source had a low carbon-to-nitrogen ratio, AM fungi favored both plant N uptake and N recovery. In contrast, when the organic source had a high carbon-to-nitrogen ratio, a clear reduction in N recovery from the fertilizer was observed. Overall, the results indicate an active role of arbuscular mycorrhizae in favoring plant N-related traits when N is not a limiting factor and show that these fungi help in N recovery from the fertilizer. These results hold great potential for increasing the sustainability of durum wheat production

    Addition of high C:N crop residues to a P-limited substrate constrains the benefits of arbuscular mycorrhizal symbiosis for wheat P and N nutrition

    Get PDF
    Many aspects concerning the role of arbuscular mycorrhizal (AM) fungi in plant nutrient uptake from organic sources remain unclear. Here, we investigated the contribution of AM symbiosis to N and P uptake by durum wheat after the addition of a high C:N biomass to a P-limited soil. Plants were grown in pots in the presence or absence of a multispecies AM inoculum, with (Org) or without (Ctr) the addition of (15)N-labelled organic matter (OM). A further treatment, in which (15)N was applied in mineral form (Ctr+N) in the same amount as that supplied in the Org treatment, was also included. Inoculation with AM had positive effects on plant growth in both control treatments (Ctr and Ctr+N), mainly linked to an increase in plant P uptake. The addition of OM, increasing the P available in the soil for the plants, resulted in a marked decrease in the contribution of AM symbiosis to plant growth and nutrient uptake, although the percentage of mycorrhization was higher in the Org treatment than in the controls. In addition, mycorrhization drastically reduced the recovery of (15)N from the OM added to the soil whereas it slightly increased the N recovery from the mineral fertiliser. This suggests that plants and AM fungi probably exert a differential competition for different sources of N available in the soil. On the whole, our results provide a contribution to a better understanding of the conditions under which AM fungi can play an effective role in mitigating the negative effects of nutritional stresses in plants. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00572-021-01031-8

    Nitrogen fertilization and arbuscular mycorrhizal fungi do not mitigate the adverse effects of soil contamination with polypropylene microfibers on maize growth

    Get PDF
    Soil contamination with microplastics may adversely affect soil properties and functions and consequently crop productivity. In this study, we wanted to verify whether the adverse effects of microplastics in the soil on maize plants (Zea mays L.) are due to a reduction in nitrogen (N) availability and a reduced capacity to establish symbiotic relationships with arbuscular mycorrhizal (AM) fungi. To do this, we performed a pot experiment in which a clayey soil was exposed to two environmentally relevant concentrations of polypropylene (PP; one of the most used plastic materials) microfibers (0.4% and 0.8% w/w) with or without the addition of N fertilizer and with or without inoculation with AM fungi. The experiment began after the soil had been incubated at 23 Â°C for 5 months. Soil contamination with PP considerably reduced maize root and shoot biomass, leaf area, N uptake, and N content in tissue. The adverse effects increased with the concentration of PP in the soil. Adding N to the soil did not alleviate the detrimental effects of PP on plant growth, which suggests that other factors besides N availability played a major role. Similarly, although the presence of PP did not inhibit root colonization by AM fungi (no differences were observed for this trait between the uncontaminated and PP-contaminated soils), the addition of the fungal inoculum to the soil failed to mitigate the negative impact of PP on maize growth. Quite the opposite: mycorrhization further reduced maize root biomass accumulation. Undoubtedly, much research remains to be done to shed light on the mechanisms involved in determining plant behavior in microplastic-contaminated soils, which are most likely complex. This research is a priority given the magnitude of this contamination and its potential implications for human and environmental health
    • …
    corecore