11,350 research outputs found

    General Fast Sampling Theorems for Nonlinear Systems

    No full text
    This paper is concerned with the gap metric approach to controller discretisation problems for continuous-time nonlinear systems with disturbances in both input and output channels. The principal idea is to construct a discrete controller based on a given stabilizing continuous time controller via a fast sampling and hold procedure and to calculate the gap between the two controllers. It is expected that, under general conditions, the computed gap depends on the discrete sample size and the faster the sample rate, the smaller the gap and, therefore, existing gap metric robust stability theorems can be applied to obtain both stability and performance results for the appropriately discretised controller. This is shown for the case of memoryless controllers and for a more general class of controllers specified by stable, causal operators. In both cases, both regional and global results are obtained under respective local and global incremental stability assumptions on the controllers

    Remote sensing applications to forest vegetation classification and conifer vigor loss due to dwarf mistletoe

    Get PDF
    Criteria was established for practical remote sensing of vegetation stress and mortality caused by dwarf mistletoe infections in black spruce subboreal forest stands. The project was accomplished in two stages: (1) A fixed tower-tramway site in an infected black spruce stand was used for periodic multispectral photo coverage to establish basic film/filter/scale/season/weather parameters; (2) The photographic combinations suggested by the tower-tramway tests were used in low, medium, and high altitude aerial photography

    Eigenlevel statistics of the quantum adiabatic algorithm

    Full text link
    We study the eigenlevel spectrum of quantum adiabatic algorithm for 3-satisfiability problem, focusing on single-solution instances. The properties of the ground state and the associated gap, crucial for determining the running time of the algorithm, are found to be far from the predictions of random matrix theory. The distribution of gaps between the ground and the first excited state shows an abundance of small gaps. Eigenstates from the central part of the spectrum are, on the other hand, well described by random matrix theory.Comment: 8 pages, 10 ps figure

    On the dominance of J(P)=0(+) ground states in even-even nuclei from random two-body interactions

    Get PDF
    Recent calculations using random two-body interactions showed a preponderance of J(P)=0(+) ground states, despite the fact that there is no strong pairing character in the force. We carry out an analysis of a system of identical particles occupying orbits with j=1/2, 3/2 and 5/2 and discuss some general features of the spectra derived from random two-body interactions. We show that for random two-body interactions that are not time-reversal invariant the dominance of 0(+) states in this case is more pronounced, indicating that time-reversal invariance cannot be the origin of the 0(+) dominance.Comment: 8 pages, 3 tables and 3 figures. Phys. Rev. C, in pres

    Remote sensing of vigor loss in conifers due to dwarf mistletoe

    Get PDF
    The initial operation of a multiband/multidate tower-tramway test site in northeastern Minnesota for the development of specifications for subsequent multiband aerial photography of more extensive study areas was completed. Multiband/multidate configurations suggested by the tower-tramway studies were and will be flown with local equipment over the Togo test site. This site was photographed by the NASA RB57F aircraft in August and September 1971. It appears that, of all the film/filter combinations attempted to date (including optical recombining of several spectral band images via photo enhancement techniques), Ektachrome infrared film with a Wratten 12 filter is the best for detecting dwarf mistletoe, and other tree diseases as well. Using this film/filter combination, infection centers are easily detectable even on the smallest photo scale (1:100,000) obtained on the Togo site

    Mobile Phone Faraday Cage

    Full text link
    A Faraday cage is an interesting physics phenomena where an electromagnetic wave can be excluded from a volume of space by enclosure with an electrically conducting material. The practical application of this in the classroom is to block the signal to a mobile phone by enclosing it in a metal can! The background of the physics behind this is described in some detail followed by a explanation of some demonstrations and experiments which I have used

    Probing the interiors of the ice giants: Shock compression of water to 700 GPa and 3.8 g/ccm

    Full text link
    Recently there has been tremendous increase in the number of identified extra-solar planetary systems. Our understanding of their formation is tied to exoplanet internal structure models, which rely upon equations of state of light elements and compounds like water. Here we present shock compression data for water with unprecedented accuracy that shows water equations of state commonly used in planetary modeling significantly overestimate the compressibility at conditions relevant to planetary interiors. Furthermore, we show its behavior at these conditions, including reflectivity and isentropic response, is well described by a recent first-principles based equation of state. These findings advocate this water model be used as the standard for modeling Neptune, Uranus, and "hot Neptune" exoplanets, and should improve our understanding of these types of planets.Comment: Accepted to Phys. Rev. Lett.; supplementary material attached including 2 figures and 2 tables; to view attachments, please download and extract the gzipped tar source file listed under "Other formats

    Hydrogen Dissociation and Diffusion on Ni and Ti -doped Mg(0001) Surfaces

    Full text link
    It is well known, both theoretically and experimentally, that alloying MgH2_2 with transition elements can significantly improve the thermodynamic and kinetic properties for H2_2 desorption, as well as the H2_2 intake by Mg bulk. Here we present a density functional theory investigation of hydrogen dissociation and surface diffusion over Ni-doped surface, and compare the findings to previously investigated Ti-doped Mg(0001) and pure Mg(0001) surfaces. Our results show that the energy barrier for hydrogen dissociation on the pure Mg(0001) surface is high, while it is small/null when Ni/Ti are added to the surface as dopants. We find that the binding energy of the two H atoms near the dissociation site is high on Ti, effectively impeding diffusion away from the Ti site. By contrast, we find that on Ni the energy barrier for diffusion is much reduced. Therefore, although both Ti and Ni promote H2_2 dissociation, only Ni appears to be a good catalyst for Mg hydrogenation, allowing diffusion away from the catalytic sites. Experimental results corroborate these theoretical findings, i.e. faster hydrogenation of the Ni doped Mg sample as opposed to the reference Mg or Ti doped Mg.Comment: 17 pages, 15 figures, to appear in Journal of Chemical Physic

    Atomic oxygen studies on polymers

    Get PDF
    The purpose was to study the effects of atomic oxygen on the erosion of polymer based materials. The development of an atomic oxygen neutral beam facility using a SURFATRON surface wave launcher that can produce beam energies between 2 and 3 eV at flux levels as high as approx. 10 to the 17th power atoms/cm (2)-sec is described. Thin film dielectric materials were studied to determine recession rates and and reaction efficiencies as a function of incident beam energy and fluence. Accelerated testing was also accomplished and the values of reaction efficiency compared to available space flight data. Electron microscope photomicrographs of the samples' surface morphology were compared to flight test specimens
    • …
    corecore