9,084 research outputs found

    Tunable fibre-coupled multiphoton microscopy with a negative curvature fibre

    Get PDF
    Negative curvature fibre (NCF) guides light in its core by inhibiting the coupling of core and cladding modes. In this work, an NCF was designed and fabricated to transmit ultrashort optical pulses for multiphoton microscopy with low group velocity dispersion (GVD) at 800 nm. Its attenuation was measured to be <0.3 dB m(-1) over the range 600-850 nm and the GVD was -180 ± 70 fs(2)  m(-1) at 800 nm. Using an average fibre output power of ∼20 mW and pulse repetition rate of 80 MHz, the NCF enabled pulses with a duration of <200 fs to be transmitted through a length of 1.5 m of fibre over a tuning range of 180 nm without the need for dispersion compensation. In a 4 m fibre, temporal and spectral pulse widths were maintained to within 10% of low power values up to the maximum fibre output power achievable with the laser system used of 278 mW at 700 nm, 808 mW at 800 nm and 420 mW at 860 nm. When coupled to a multiphoton microscope, it enabled imaging of ex vivo tissue using excitation wavelengths from 740 nm to 860 nm without any need for adjustments to the set-up

    Electronic transport coefficients from ab initio simulations and application to dense liquid hydrogen

    Full text link
    Using Kubo's linear response theory, we derive expressions for the frequency-dependent electrical conductivity (Kubo-Greenwood formula), thermopower, and thermal conductivity in a strongly correlated electron system. These are evaluated within ab initio molecular dynamics simulations in order to study the thermoelectric transport coefficients in dense liquid hydrogen, especially near the nonmetal-to-metal transition region. We also observe significant deviations from the widely used Wiedemann-Franz law which is strictly valid only for degenerate systems and give an estimate for its valid scope of application towards lower densities

    Ranking structured documents using utility theory in the Bayesian network retrieval model

    Get PDF
    In this paper a new method based on Utility and Decision theory is presented to deal with structured documents. The aim of the application of these methodologies is to refine a first ranking of structural units, generated by means of an Information Retrieval Model based on Bayesian Networks. Units are newly arranged in the new ranking by combining their posterior probabilities, obtained in the first stage, with the expected utility of retrieving them. The experimental work has been developed using the Shakespeare structured collection and the results show an improvement of the effectiveness of this new approach

    Estimating the nuclear level density with the Monte Carlo shell model

    Get PDF
    A method for making realistic estimates of the density of levels in even-even nuclei is presented making use of the Monte Carlo shell model (MCSM). The procedure follows three basic steps: (1) computation of the thermal energy with the MCSM, (2) evaluation of the partition function by integrating the thermal energy, and (3) evaluating the level density by performing the inverse Laplace transform of the partition function using Maximum Entropy reconstruction techniques. It is found that results obtained with schematic interactions, which do not have a sign problem in the MCSM, compare well with realistic shell-model interactions provided an important isospin dependence is accounted for.Comment: 14 pages, 3 postscript figures. Latex with RevTex. Submitted as a rapid communication to Phys. Rev.

    Special Theory of Relativity through the Doppler Effect

    Full text link
    We present the special theory of relativity taking the Doppler effect as the starting point, and derive several of its main effects, such as time dilation, length contraction, addition of velocities, and the mass-energy relation, and assuming energy and momentum conservation, we discuss how to introduce the 4-momentum in a natural way. We also use the Doppler effect to explain the "twin paradox", and its version on a cylinder. As a by-product we discuss Bell's spaceship paradox, and the Lorentz transformation for arbitrary velocities in one dimension.Comment: 20 pages, 1 figur

    The Design and Validation of the Quantum Mechanics Conceptual Survey

    Full text link
    The Quantum Mechanics Conceptual Survey (QMCS) is a 12-question survey of students' conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper we describe the design and validation of the survey, a process that included observations of students, a review of previous literature and textbooks and syllabi, faculty and student interviews, and statistical analysis. We also discuss issues in the development of specific questions, which may be useful both for instructors who wish to use the QMCS in their classes and for researchers who wish to conduct further research of student understanding of quantum mechanics. The QMCS has been most thoroughly tested in, and is most appropriate for assessment of (as a posttest only), sophomore-level modern physics courses. We also describe testing with students in junior quantum courses and graduate quantum courses, from which we conclude that the QMCS may be appropriate for assessing junior quantum courses, but is not appropriate for assessing graduate courses. One surprising result of our faculty interviews is a lack of faculty consensus on what topics should be taught in modern physics, which has made designing a test that is valued by a majority of physics faculty more difficult than expected.Comment: Submitted to Physical Review Special Topics: Physics Education Researc

    Three-body monopole corrections to the realistic interactions

    Get PDF
    It is shown that a very simple three-body monopole term can solve practically all the spectroscopic problems--in the pp, sdsd and pfpf shells--that were hitherto assumed to need drastic revisions of the realistic potentials.Comment: 4 pages, 5figure

    Giving electrons a ride: nanomechanical electron shuttles

    Full text link
    Nanomechanical shuttles transferring small groups of electrons or even individual electrons from one electrode to another offer a novel approach to the problem of controlled charge transport. Here, we report the fabrication of shuttle-junctions consisting of a 20 nm diameter gold nanoparticle embedded within the gap between two gold electrodes. The nanoparticle is attached to the electrodes through a monolayer of flexible organic molecules which play the role of springs so that when a sufficient voltage bias is applied, then nanoparticle starts to oscillate transferring electrons from one electrode to the other. Current-voltage characteristics for the fabricated devices have been measured and compared with the results of our computer simulations.Comment: 11 pages, 4 figure

    Re-entrant superconductivity in Nb/Cu(1-x)Ni(x) bilayers

    Full text link
    We report on the first observation of a pronounced re-entrant superconductivity phenomenon in superconductor/ferromagnetic layered systems. The results were obtained using a superconductor/ferromagnetic-alloy bilayer of Nb/Cu(1-x)Ni(x). The superconducting transition temperature T_{c} drops sharply with increasing thickness d_{CuNi} of the ferromagnetic layer, until complete suppression of superconductivity is observed at d_{CuNi}= 4 nm. Increasing the Cu(1-x)Ni(x) layer thickness further, superconductivity reappears at d_{CuNi}=13 nm. Our experiments give evidence for the pairing function oscillations associated with a realization of the quasi-one dimensional Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) like state in the ferromagnetic layer.Comment: 3 pages, 3 figures, REVTEX4/twocolum
    • …
    corecore