486 research outputs found

    Natural killer cells in human autoimmune disorders

    Full text link

    Murine cytomegalovirus protein pM92 Is a conserved regulator of viral late gene expression

    Get PDF
    In this study, we report that murine cytomegalovirus (MCMV) protein pM92 regulates viral late gene expression during virus infection. Previously, we have shown that MCMV protein pM79 and its human cytomegalovirus (HCMV) homologue pUL79 are required for late viral gene transcription. Identification of additional factors involved is critical to dissecting the mechanism of this regulation. We show here that pM92 accumulated abundantly at late times of infection in a DNA synthesis-dependent manner and localized to nuclear viral replication compartments. To investigate the role of pM92, we constructed a recombinant virus SMin92, in which pM92 expression was disrupted by an insertional/frameshift mutation. During infection, SMin92 accumulated representative viral immediate-early gene products, early gene products, and viral DNA sufficiently but had severe reduction in the accumulation of late gene products and was thus unable to produce infectious progeny. Coimmunoprecipitation and mass spectrometry analysis revealed an interaction between pM92 and pM79, as well as between their HCMV homologues pUL92 and pUL79. Importantly, we showed that the growth defect of pUL92-deficient HCMV could be rescued in trans by pM92. This study indicates that pM92 is an additional viral regulator of late gene expression, that these regulators (represented by pM92 and pM79) may need to complex with each other for their activity, and that pM92 and pUL92 share a conserved function in CMV infection. pM92 represents a potential new target for therapeutic intervention in CMV disease, and a gateway into studying a largely uncharted viral process that is critical to the viral life cycle

    Molecular Physics

    Get PDF
    Contains reports on two research projects.F.L. Freidman ChairNational Institutes of Health (Grant AM 25535)Whitaker FoundationInternational Business Machines, Inc

    Expansion of a novel population of NK cells with low ribosome expression in juvenile dermatomyositis

    Get PDF
    Juvenile dermatomyositis (JDM) is a pediatric autoimmune disease associated with characteristic rash and proximal muscle weakness. To gain insight into differential lymphocyte gene expression in JDM, peripheral blood mononuclear cells from 4 new-onset JDM patients and 4 healthy controls were sorted into highly enriched lymphocyte populations for RNAseq analysis. NK cells from JDM patients had substantially greater differentially expressed genes (273) than T (57) and B (33) cells. Upregulated genes were associated with the innate immune response and cell cycle, while downregulated genes were associated with decreased ribosomal RNA. Suppressed ribosomal RNA in JDM NK cells was validated by measuring transcription and phosphorylation levels. We confirmed a population of low ribosome expressing NK cells in healthy adults and children. This population of low ribosome NK cells was substantially expanded in 6 treatment-naïve JDM patients and was associated with decreased NK cell degranulation. The enrichment of this NK low ribosome population was completely abrogated in JDM patients with quiescent disease. Together, these data suggest NK cells are highly activated in new-onset JDM patients with an increased population of low ribosome expressing NK cells, which correlates with decreased NK cell function and resolved with control of active disease

    Molecule Microscopy

    Get PDF
    Contains research objectives and reports on four research projects.National Institutes of Health (Grant AM-25535)Whitaker FoundationFrancis L. Friedman Chai

    Favorable outcomes with reduced steroid use in juvenile dermatomyositis

    Get PDF
    BACKGROUND: High-intensity glucocorticoid regimens are commonly used to induce and maintain remission in Juvenile Dermatomyositis but are associated with several adverse side-effects. Evidence-based treatment guidelines from North American and European pediatric rheumatology research societies both advocate induction with intravenous pulse steroids followed by high dose oral steroids (2 mg/kg/day), which are then tapered. This study reports the time to disease control with reduced glucocorticoid dosing. METHODS: We retrospectively reviewed the records at a single tertiary-care children\u27s hospital of patients diagnosed with Juvenile Dermatomyositis between 2000 and 2014 who had a minimum of 2 years of follow-up. The primary outcome measure was time to control of muscle and skin disease. Additional outcome measures included glucocorticoid dosing, effect of treatment on height, frequency of calcinosis, and complications from treatment. RESULTS: Of the 69 patients followed during the study period, 31 fulfilled inclusion criteria. Median length of follow-up was 4.58 years, (IQR 3-7.5). Myositis control was achieved in a median of 7.1 months (IQR 0.9-63.4). Cutaneous disease control was achieved in a median of 16.7 months (IQR 4.3-89.5). The median starting dose of glucocorticoids was 0.85 mg/kg/day, (IQR 0.5-1.74). The median duration of steroid treatment was 9.1 months, (IQR 4.7-17.4), while the median duration of any pharmacotherapy was 29.2 months (IQR 10.4 to 121.3). Sustained disease control off medications was achieved in 21/31 (68%) patients by the end of review. Persistent calcinosis was identified in only one patient (3%). CONCLUSION: Current accepted treatment paradigms for Juvenile Dermatomyositis include oral glucocorticoids beginning at 2 mg/kg/day and reduced over a prolonged time period. However, our results suggest that treatment using reduced doses and duration with early use of steroid-sparing agents is comparably effective in achieving favorable outcomes in Juvenile Dermatomyositis

    Dysregulated NK cell PLCγ2 signaling and activity in juvenile dermatomyositis

    Get PDF
    Juvenile dermatomyositis (JDM) is a debilitating pediatric autoimmune disease manifesting with characteristic rash and muscle weakness. To delineate signaling abnormalities in JDM, mass cytometry was performed with PBMCs from treatment-naive JDM patients and controls. NK cell percentages were lower while frequencies of naive B cells and naive CD4+ T cells were higher in JDM patients than in controls. These cell frequency differences were attenuated with cessation of active disease. A large number of signaling differences were identified in treatment-naive JDM patients compared with controls. Classification models incorporating feature selection demonstrated that differences in phospholipase Cγ2 (PLCγ2) phosphorylation comprised 10 of 12 features (i.e., phosphoprotein in a specific immune cell subset) distinguishing the 2 groups. Because NK cells represented 5 of these 12 features, further studies focused on the PLCγ2 pathway in NK cells, which is responsible for stimulating calcium flux and cytotoxic granule movement. No differences were detected in upstream signaling or total PLCγ2 protein levels. Hypophosphorylation of PLCγ2 and downstream mitogen-activated protein kinase-activated protein kinase 2 were partially attenuated with cessation of active disease. PLCγ2 hypophosphorylation in treatment-naive JDM patients resulted in decreased calcium flux. The identification of dysregulation of PLCγ2 phosphorylation and decreased calcium flux in NK cells provides potential mechanistic insight into JDM pathogenesis

    DAP12 Signaling Directly Augments Proproliferative Cytokine Stimulation of NK Cells during Viral Infections

    Get PDF
    Abstract NK cells vigorously proliferate during viral infections. During the course of murine CMV infection, this response becomes dominated by the preferential proliferation of NK cells that express the activation receptor Ly49H. The factors driving such selective NK cell proliferation have not been characterized. In this study, we demonstrate that preferential NK cell proliferation is dependent on DAP12-mediated signaling following the binding of Ly49H to its virally encoded ligand, m157. Ly49H signaling through DAP12 appears to directly augment NK cell sensitivity to low concentrations of proproliferative cytokines such as IL-15. The impact of Ly49H-mediated signaling on NK cell proliferation is masked in the presence of high concentrations of proproliferative cytokines that nonselectively drive all NK cells to proliferate

    Reliance on Cox10 and oxidative metabolism for antigen-specific NK cell expansion

    Get PDF
    Natural killer (NK) cell effector functions are dependent on metabolic regulation of cellular function; however, less is known about in vivo metabolic pathways required for NK cell antiviral function. Mice with an inducible NK-specific deletion of Cox10, which encodes a component of electron transport chain complex IV, were generated to investigate the role of oxidative phosphorylation in NK cells during murine cytomegalovirus (MCMV) infection. Ncr1-Cox1
    • …
    corecore