50 research outputs found

    Hydrodynamic Instability of the Flux-antiflux Interface in Type-II Superconductors

    Full text link
    The macroturbulence instability observed in fluxline systems during remagnetization of superconductors is explained. It is shown that when a region with flux is invaded by antiflux the interface can become unstable if there is a relative tangential flux motion. This condition occurs at the interface when the viscosity is anisotropic, e.g., due to flux guiding by twin boundaries in crystals. The phenomenon is similar to the instability of the tangential discontinuity in classical hydrodynamics. The obtained results are supported by magneto-optical observations of flux distribution on the surface of a YBCO single crystal with twins.Comment: 12 pages, 3 figures, submitted to Physical Review Letter

    Reversible melting and equilibrium phase formation of (Bi,Pb)2Sr2Ca2Cu3O10+d

    Full text link
    The decomposition and the reformation of the (Bi,Pb)2Sr2Ca2Cu3O10+d (?Bi,Pb(2223)?) phase have been investigated in-situ by means of High-Temperature Neutron Diffraction, both in sintered bulk samples and in Ag-sheathed monofilamentary tapes. Several decomposition experiments were performed at various temperatures and under various annealing atmospheres, under flowing gas as well as in sealed tubes, in order to study the appropriate conditions for Bi,Pb(2223) formation from the melt. The Bi,Pb(2223) phase was found to melt incongruently into (Ca,Sr)2CuO3, (Sr,Ca)14Cu24O41 and a Pb,Bi-rich liquid phase. Phase reformation after melting was successfully obtained both in bulk samples and Ag-sheathed tapes. The possibility of crystallising the Bi,Pb(2223) phase from the melt was found to be extremely sensitive to the temperature and strongly dependent on the Pb losses. The study of the mass losses due to Pb evaporation was complemented by thermogravimetric analysis which proved that Pb losses are responsible for moving away from equilibrium and therefore hinder the reformation of the Bi,Pb(2223) phase from the melt. Thanks to the full pattern profile refinement, a quantitative phase analysis was carried out as a function of time and temperature and the role of the secondary phases was investigated. Lattice distortions and/or transitions were found to occur at high temperature in Bi,Pb(2223), Bi,Pb(2212), (Ca,Sr)2CuO3 and (Sr,Ca)14Cu24O41, due to cation diffusion and stoichiometry changes. The results indicate that it is possible to form the Bi,Pb(2223) phase from a liquid close to equilibrium conditions, like Bi(2212) and Bi(2201), and open new unexplored perspectives for high-quality Ag-sheathed Bi,Pb(2223) tape processing.Comment: 45 pages (including references,figures and captions), 13 figures Submitted to Supercond. Sci. Techno

    Chromosome characterization and variability in some Iridaceae from Northeastern Brazil

    Get PDF
    The chromosomes of 15 species of Iridaceae of the genera Alophia, Cipura, Eleutherine, Neomarica and Trimezia (subfamily Iridoideae) were examined after conventional Giemsa staining. The karyotypes of Alophia drummondii (2n = 14+1B, 28, 42 and 56), Cipura paludosa (2n = 14), C. xanthomelas (2n = 28) and Eleutherine bulbosa (2n = 12) were asymmetric; Neomarica candida, N. caerulea, N. humilis, N. glauca, N. gracilis, N. northiana and Neomarica sp. (2n = 18); N. cf. paradoxa (2n = 28), Trimezia fosteriana (2n = 52), T. martinicensis (2n = 54) and T. connata (2n = 82) were all generally symmetric. New diploid numbers of 2n = 56 for Alophia drummondii, 2n = 18 for N. candida, N. humilis, N. glauca, and N. gracilis, 2n = 28 for N. cf. paradoxa, and 2n = 82 for T. connata are reported. The karyotypic evolution of the studied species is discussed
    corecore